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ABSTRACT 

Heart auscultation still remains a dominant method for the diagnosis of heart diseases caused by heart valve abnor-
malities. But it is very subjective and significantly relies on the interpretation or perception of well-trained physicians. 
Thus it would be very desirable to develop a computer-aided automated or semi-automated heart sound identification 
system that can provide more objective diagnositic results. Recently a hidden Markov model (HMM) has been used 
quite successfully for the classification of heart sounds. In this paper, we have investigated the classification perform-
ance of the MFCC-based HMM with heart sound signals by varying the model’s number of states, number of mix-
tures, and analysis frame size in MFCC feature extraction. We carried out the classification experiments using the 
325 heart sound data made up of 10 different types of heart sound signals. From this, maximum correct classification 
rate of 95.08% was achieved when the HMM has 4 states, 8 mixtures with analsys frame size of 20ms for feature ex-
traction.  

 
1. INTRODUCTION  

Heart abnormality is often resulted from the turbulent flow of 
blood in heart vessels. Auscultation is the most widely used 
and cost effective non-invasive technique for the diagnosis of 
heart diseases among a variety of diagnostic techniques such 
as electrocardiogram (ECG), echo cardiogram, etc[1-2]. 
However, the auscultation based heart disease diagnosis 
method is very subjective since it largely relies on the inter-
pretation or perception of physicians. To have precise diag-
nosis of heart diseases with auscultation, physicans need rich 
diagnostic experiences which will take years to acquire. Thus 
developing a computer-aided heart disorder diagnosis system 
is very desirable. Phonocardiogram (PCG), a visual display 
of the heart sound waveform has proved to provide valuable 
information of heart conditions such as major components of 
heart sound and cardiac murmurs for the diagnosis of heart 
diseases. During recent decades, enormous research efforts 
have been contributed to developing such automated diagnos-
tic system for the PCG to assist clinicians in making a better 
diagnosis of heart disorders. 

Feature extraction is important in the classification process. 
Time-frequency based methods have been reported to be 
suitable for classifying heart disorders and used to character-
ize the heart sound signals [3-5]. Recently, mel-frequency 
cepstral coefficient (MFCC) has been used with a hidden 
Markov model (HMM) for automatic heart sound ausculta-
tion and has shown good performance [6]. Furthermore, 
comparative classification experiments according to different 
dynamic feature sets based on time-frequency representation 
have shown that the MFCC features achieved the best classi-
fication performance than any other feature sets [7]. As a 
classifier for the heart sound signals, most researchers use an 

artificial neural network (ANN) [8-10]. The ANN with hid-
den layers shows good classification performance, but it is 
not effective for non-stationary time varying signals such as 
speech and heart sound. On the contrary, the HMM has 
proved to be effective for modelling the heart sound signals 
[11-13] due to its capability of modelling well the time vary-
ing and non-stationary signals. In [14], the authors found that 
HMM outperforms ANN over heart sound classification.  

In the MFCC-based HMM automatic system for identifica-
tion of heart diseases, factors such as the frame size in MFCC 
feature extraction, the number of HMM states and the num-
ber of Gaussian mixtures in each HMM state affect the clas-
sification performance, however, such a problem has not 
been addressed in detail at most referred papers. Thus, in this 
paper, we have investigated the classification performance of 
the HMM with MFCC features depending on the analysis 
frame size, number of states, and number of mixtures in each 
state. The 13-dimension MFCC including the log energy of 
the frame was used as feature parameters. Then experimental 
results are presented with our discussions. 

The remaining of this paper is organized as follows. Section 
2 will give a brief explanation about the MFCC feature ex-
traction and HMM modelling algorithms for the heart sounds. 
Then section 3 presents experimental results with discus-
sions. Finally conclusion is given in Section 4. 

2. MFCC AND HMM  

2.1 Mel-Frequency Cepstral Coefficient 

The MFCC, a perceptual representation of the power spec-
trum of a sound signal, is obtained by taking a discrete cosine 
transform of  logarithmic power spectrum on a nonlinear mel 
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Figure 1. Block diagram of MFCC extraction process 

scale of frequency. Figure 1 shows the block diagram of the 
MFCC feature extraction process. 

The signal is first segmented into short frames. Then Ham-
ming window is applied to each frame to reduce the edge 
effect. The Hamming window with length N is given by 
eq.(1): 

)
1

2cos(46.054.0)(
−

−=
N

nnw π
 (1) 

Denoting the m th frame of the input signal by )(nxm , then 
its DFT is given like eq.(2):  
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Then the output energy of the i th filter of the filter bank is 
calculated using the eq.(3). The filter bank is made up of a 
certain number of triangular shaped bandpass filters which 
are centered on equally spaced in the mel frequency domain.  
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where )(lHi  is the l th weight of the i th triangular filter in 

the filter bank, and 1N  is the associated number of weights. 
The mapping from linear frequency to mel frequency is ex-
pressed as  
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By taking the discrete cosine transform of the log energy of 
each filter calculated by eq.(3), we can get the MFCCs as 
given in eq.(5): 
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where M is the number of filters in the filter bank and q is 
the order of the MFCC. In our work we set q to 12 as used in 
speech recognition. Including the log energy of the frame as 
given in eq.(6), we then have 13-dimension MFCCs as fea-
ture parameters.  
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2.2 HMM classification system 

A hidden Markov model is a stochastic finite state machine 
which can control the selection of the states of a sequence of 
observations as well as the transition probabilities between 
states. The probability distribution of observations in each 

state, saying j , is modelled by Gaussian mixtures, expressed 
as eq.(7) 
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Where M is the number of Gaussian mixtures, N is the 

number of HMM states, ,jmw  ,jmμ jmU are the weight of 

m th mixture of j th state, mean vector, covariance matrix, 

respectively, ),|( jmjm UoN μ is a multivariate Gaussian 

probability distribution function. The transition from state i to 

state j is controlled by the transition probability ija .Given 

the HMM model ),,( πλ BA=  in which A represents the 

state transition matrix, B represents the probability distribu-
tion of observations, and π represents the initial state distri-

bution,and a sequency of observations },...,{ 21 ToooO = , 
classification is carried out by calculating the likelihood 
score of )|( λOP . 

 Figure 2 shows the procedure of training to generate HMMs 
of the heart sound signals. Using the Baum-Welch algorithm 
with MFCC features obtained from the same type of heart 
sound signals, each HMM corresponding to the specific type 
of heart disease is constructed. In the classification procedure, 
the MFCCs extracted from the test signal are applied to each 
HMM and calculate the correspondng )|( λOP . Then the 
model which gives the highest value is selected as the classi-
fication result. Figure 3 shows the block diagram of the clas-
sification procedure.  
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Figure 2. Block diagram of HMM training procedure 

 

Figure 3. Block diagram of HMM classification procedure 
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Figure 4. A four-state left-to-right HMM for a cycle of    
normal heart sound signal 

One period of a heart sound cycle consists of four compo-
nents, namely S1, systole, S2 and diastole, as shown in Fig-
ure 4. So, in modelling the heart sound signal with HMMs, a 
four-state left-to-right HMM is first adopted. Each state in 
Figure 4 can be considered as each sound component since 
the signal characteristics in the state can be viewed to be 
homogeneous [14].  

3. EXPERIMENTS AND DISCUSSIONS 

In this work, 325 manually segmented heart sound cycles 
corresponding to 10 types of heart diseases, namely, Normal 
sound (NM), Innocent Murmur (IM), Splitting (SPI), Mitral 
Value Prolapse (MVP), Gallop (GAL), Ventrical Septal De-
fect (VSD), Aortic Stenosis (AS), Mitral Stenosis (MS), 
Pulmonic Stenosis (PS), Coarctation of Aorta (CA), were 
used for classification experiments. The original signals were 
obtained from the clinical audio CDs [15], and were re-
sampled to 8KHz with 16bit resolution, mono format. The 
numbers of sound cycles associated with their types of heart 
diseases are listed in Table 1.  

Table 1. Number of data samples for each heart disease type 

TP NM IM SPI MVP GAL VSD AS MS PS CA 

Num 20 20 30 28 38 30 39 40 40 40 

To overcome the data insufficiency problem, leave-one-out 
method was used in the classification. That is, only one data 
sample is used for test while the left data samples are used 
for training, and that process is repeated until all the data are 
tested once. The classification performance is evaluated in 
the form of correct classification accuracy rate (CCAR). We 
carried out comparative experiments with respect to different 
parameter values of analysisi window size in MFCC feature 
extraction, different number of HMM states and different 
number of Gaussian mixtures to investigate the influence of 
these factors on the classification performance. 

Table 2 shows the classification results with the number of 
HMM states equal to 4. The first column represents different 
number of mixtures while the first row represents different 
analysis frame size, i.e., window length with fixed window 
shifting rate. By observing the results of each column, we can 
find that the best performance is achieved when the number 
of mixtures is set to 8. In the light of this observation, we can 
say that neither too small nor too large number of mixtures 
could produce the best results because too small number of 
mixtures couldn’t model the spectral variability of heart 
sounds well in each HMM state while too big number would 
result in mixture-heavies problem. Similarly, we can observe 
the results in each row to investigate the influence of the 
window length on the classification performance. Firstly by 
observing the results of the first row and the fourth row, we 
can find that the performance decreases as the window length 
gets smaller. This might  be due to that a large window length  

Table 2. CCAR (%), MFCC=13, NumState=4 

 50ms/10ms 25ms/10ms 20ms/10ms 15ms/10ms 

4 93.28 91.48 91.17 90.23 

8 94.22 94.51 95.08 92.10 

16 93.01 93.62 91.78 90.29 

24 92.10 89.62 88.73 87.24 

 

Table 3. CCAR (%), MFCC=13, NumState=5 

 50ms/10ms 25ms/10ms 20ms/10ms 15ms/10ms 

4 92.70 90.27 91.49 89.67 

8 94.85 94.55 94.55 93.03 

16 93.94 92.37 90.87 91.82 

24 92.43 89.03 88.08 86.63 

 

Table 4. CCAR (%), MFCC=13, NumState=3 

 50ms/10ms 25ms/10ms 20ms/10ms 15ms/10ms 

4 88.35 85.31 86.24 82.86 

8 92.00 88.73 89.66 89.96 

16 93.28 92.10 91.21 89.09 

24 94.53 89.70 89.70 87.58 

could capture enough distinctive characteristic information of 
the signal within each frame when the number of mixtures is 
4. Similarly, for the case in which the number of mixtures is 
24, the severity of mixture-heaviest problem within a larger 
window length is smaller than that of within a smaller win-
dow length even though they are both affected by mixture-
heaviest problem. However, excluding these two extreme 
cases, for the two cases with the number of mixtures equals 
to 8 or 16, the previous changing trend doesn’t hold any 
more, indicating that we should make a compromise between 
the number of mixtures and the window length. The maxi-
mum corrct classification rate of 95.08% was achieved when 
the pair parameters of window length and window shift rate 
are set to 20ms/10ms and the number of mixtures is set to 8. 

Table 3 shows the classification results when the number of 
HMM states equals to 5. By analyzing the results in Table 3 
in a similar way like Table 2, we can find that the maximum 
classification accuracy in each column is achieved when the 
number of mixtures equals to 8, but there merely exists slight 
difference between the performances with respect to the win-
dow length parameter. The best accuracy rate of 94.85% was 
achieved in this table. The performance changing trend ver-
sus the window length parameters with the number of mix-
tures fixed is not the same as before. 

Table 4 shows the classification results when the number of 
HMM states equals to 3. From this table, the CCAR changing 
trend is significantly different from that of the previous two 
tables due to the effect of the number of HMM states, set to 
3. It’s obvious that the overall performance decreases signifi- 



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

 ICA 2010 

Table 5. Classifictication confusion matrix under the condi-
tion that the Number of HMM states equal to 4, the number 

of Guassian mixtures equal to 8, the window length and win-
dow shift values equal to 20ms/10ms.   

 NM IM SPI MVP GAL VSD AS MS PS CA 

NM 20          

IM  20         

SPI   25  5      

MVP    22 6      

GAL     38      

VSD      28    2 

AS 2      36 1   

MS        40   

PS         40  

CA          40 

cantly compared to the previous two cases of the number of 
HMM states.We may infer that the 3-state left-to-right HMM 
in this case couldn’t model precisely the underlying structure 
of one heart sound cycle which includes four components, 
namely S1, systole, S2 and diastole in order. 

In short, a 4-state HMM with the number of mixtures 8, and 
the window length with window shifting rate 20ms/10ms are 
appropriate among all the cases we have investigated. Classi-
fication confusion matrix in this case is given in Table 5. The 
column represents the real type of heart disease, while the 
row represents the category into which the heart sound signal 
was classified. From this matrix, the two types of heart dis-
eases MVP, SPI are relatively prone to be wrongly assigned 
into the GAL type due to their resemblance in shape, i.e. 
there exsits splitting or click sound in their waveforms.  

4. CONCLUSION 

In this paper, we have investigated the classification per-
formance of the HMM with MFCC features depending on the 
analysis frame size, number of states, and number of mix-
tures in each state.  Using the 325 manually segmented heart 
sound cycles corresponding to 10 types of heart diseases, we 
achieved maximum correct classification rate of 95.08% 
when the HMM has 4 states, 8 mixtures with frame size of 
20ms. Even though a 4-state HMM model with appropriate 
parameter values of window length and the number of Gaus-
sian mixtures has shown to produce the best result, there is 
only slight difference from that of the 5-state HMM. This 
may be due to that many heart sound signals have splitting or 
click components as well as mumur components in silent 
durations of systole and diastole, which makes the one cycle 
mostly viewed to have 5 components. From this perspective, 
a 5-state HMM to some extent can be more appropriate and 
robust to model the various types of heart sound signals.  

In our work, we think the size of the data was not enough to 
validate the results. Thus, more classification experiments 
with large size of the various types of heart disorder PCG 
data are necessary for the future work. In addition to that, 
classification experiments were done using the manually 
segmented heart sound cycles. So future work will be also 
dedicated to developing a robust automatic segmentation 
algorithm and combining it with MFCC feature based HMM 
classifier to implement a complete automatic diagnositic 
system of heart disorders. 
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