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ABSTRACT 

In realtime rendering of a virtual auditory environment, multiple virtual sound images may be synthesized simultane-
ously, which cost a lot of computation resource. The present work proposes a head-related transfer function (HRTF) 
model for fast synthesizing multiple virtual sound images. The head-relate impulse response (HRIR) of the KEMAR 
artificial head in horizontal plane is decomposed by using two-level wavelet packet. To simplify the model, for each 
wavelet packet tree node (subband), the beginning and ending parts of the coefficients, which are close to zeros, are 
discarded, while the main part of the coefficients, which contribute most to the HRIR energy, are preserved. The re-
sults show that, when an appropriate wavelet function is selected, coeffients with only 25 samples are sufficient to re-
construct the original HRIR.. The average error across all azimuthes caused by simplification is about 2.5% with a 
maximal error below 4%. The present HRTF model is very easy to implement by using wavelet filters and sparse fil-
ters. Its computational load is M*S+W, where M is the number of the sound images, S and W are the computational 
load of the sparse filters and wavelet filters. The coefficients of sparse filters are the upsample (zeros insert) from the 
wavelet coefficients, hence the length of nonzero coefficients are much less than that of the original HRTF filter. This 
means that the present HRTF model can save much computational resource when M is large. 

INTRODUCTION 

In a virtual auditory display (VAD), the input stimulus is 
convoluted with the head-relate impulse responses (HRIRs) 
to synthesize binaural signals. Usually, the length of a meas-
ured HRIR varies from 128 to 4096 points (at 44.1kHz sam-
ple frequency) [1]-[3]. If a complex auditory environment 
with multiple virtual sound images is rendered, the cost of   
computation is high. Therefore, it is required to simplify the 
HRIRs or head-realted transfer functions (HRTFs) model 
used in computation. 

The common method is to design low order FIR or IIR HRTF 
filters[4]-[7].  It has been shown that a FIR filter with length 
of about 60~70 points, or a IIR filter with length of 40~50 
points (at 44.1 kHz ~ 48 kHz sample frequency) can model 
the HRTF with slight error [4]. The required order of an IIR 
filter is often less than that of a FIR filter, but the IIR filter 
should be designed carefully to avoid the unstability.  

Cesar et.al presented a HRTF model based on wavelet[8]. 
The model consisted of a set of sparse filters, followed by 
wavelet decomposed filters. The coefficients of the sparse 
filters were obtained by an adaptive filtering algorithm or an 
analytical formulation. According to the author, the sparse 
filters could be reduced to have only 30 coefficiets to model 
the original HRTF.  The error (energy loss) is about 10%.  
Cesar’s model is very efficient in synthesizing mulitple vir-
tual sound images of the same input stimulus, but is not quite 
efficient in synthesizing multipile virtual sound images of 
different input stimuli, because the wavelet decomposion 
have to be carried out for each stimulus.  

To address this problem, a new HRTF model based on wave-
let is presented in this paper. The proposed model makes the 
signal processing for auditory environment auditory envi-
ronment much more effective.  

 

THEORY 

Figure 1(a) and 1(b) show the structure of multiple level de-
screte wavelet decomposition and reconstruction. Where H0(z) 
and H1(z) are the wavelet low-pass and high-pass decomposi-
tion filters,  G0(z) and G1(z) are the wavelet low-pass and 
high-pass reconstruction filters, respectively. They all can be 
calculated from the corresponding wavelet function. 
C0,C1,…,Cm are the wavelet coefficients of the input signal 
r(n).  

In figure 1, the downsampling can be moved to the position 
after the decomposition filters and the upsampling can be 
moved to the position before the reconstruction filters[9], the   
resulting equivalent structure of figure 1 are shown in figure 
2. In figure 2: 
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Figure 1. Discrete wavelet decompostion (a) and reconstruc-
tion (b) 

 
 
Figure 2. Equivalent structure of figure 1 

In figure 2, uC0,uC1…uCm are the upsampleing (zero inter-
plotion) of the wavelet coefficients C0,C1…Cm , thus  they 
have the same sampling frequency as the reconstructed signal 
ˆ( )r n . Therefore,  

0 0 1 1ˆ( ) ( ) ( ) ( ) ( ) ( )* ( )m mr n uC n g n uC n g n uC n g n= ∗ + ∗ + +L   (6) 

g0(n),g1(n),… ,gm(n) are the time domain versions of the 
G0(z),G1(z),…, Gm(z) in figure 2.  Most wavelet filter banks 
have the perfect reconstruction property. Hence the system 
output signal ˆ( )r n  is the time delay of the input signal r(n), 
that is: 

ˆ( ) ( )r n r n N= −                                                             (7) 

where N is a constant. If the input signal r(n) is a HRIR, it 
can be reconstructed according to equation (6). The recon-
structed HRIR is the time delay version of the original HRIR. 

If the time delay is small, the reconstructed HRIR is indistin-
guishable from the original one by hearing. 

As a result, according to equation (6), the proposed structure 
of the HRTF model is shown in figure 3. The model consists 
of two parts. The first part is the sparse filters 

0
0 ( )LR z , 1

1( )LR z , … , ( )mL
mR z , whose coefficients are 

uC0,uC1…uCm. The second part is the reconstructed filters 
G0(z),G1(z),…,Gm(z), which are identical to those in figure 2. 
And the corresponding coefficients can be calculated accord-
ing to equations (3) and (4). 
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Figure 3. Structure of  the proposed HRTF model 

The coefficients of the spare filters ( )iL
iR z  (I =0,…,m) are 

the upsampling of the wavelet coefficients of the HRIR. 
Hence its nonzero coefficients are seperated by Li-1 zeros. A 
spares filter can be implemented in an efficient way, as show 
in Figure 4. Where b0,b1, …,bk are the nonzero coefficients of 
the sparse filter. 

 
 
Figure 4. Implementation of the sparse filter ( )iL

iR z  

The implementation of the sparse filter is very similar to the 
general FIR filter except for the delay unit of Li samples in-
stead of just one sample. In actual programming, the delay 
operation is implemented by pointer shifting. Hence, it is 
very easy to modify the common FIR filter program to sparse 
filter program. Thus, the computation load of a sparse filter is 
not determined by its actual length, but is determined by the 
length of its nonzero coefficients. In the proposed HRTF 
model, the nonzero coefficients of the sparse filters are the 
wavelet coefficients of HRIR, thus the model can be simpli-
fied by compressing the wavelet coefficients of HRIR. 

WAVELET ANALYSIS 

A HRIR can also be analysed by using wavelet packet. Mod-
eling a HRTF by using wavelet packet analysis is almost 
identical to that by wavelet analysis. 

There are many ways to analyze a HRIR by using wavelet or 
wavelet packet. To compress the wavelet coefficients effi-
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ciently, it is needed to assign most energy in some subbands 
(nodes). The key is to select a proper wavelet tree and wave-
let function. We tried some wavelet trees and wavelet func-
tions.  At the end, we choose the 2 level (4 subbands) wavelet 
packet, as shown in figure 5. Seveval orthogonal or bior-
thogonal wavelet functions, such as “Daubechies”,” 
Coiflets”,” Symlets” are good choice.  

 
 
Figure 5. 2 level wavelet packet tree 

In this study, the left-ear HRIRs of KEMAR at 72 horizontal 
directions from MIT media Lab were used [2]. The HRIRs 
were sampled at 44.1 kHz with length of 512 points. The 
initial delay in the measured HRIRs (detected by the leading 
edge of the 10% of the maximum) was removed at first10]. 
And then the preceding 128 samples of the data were re-
mained and called “original HRIR” in this study. The original 
HRIR was then analyzed by using 2 level wavelet packet   

Figure 6 shows the analysis result of the HRIR at azimuth θ = 
90°. The wavelet function is ‘Coif5’.  It can be seen that the 
node(2,0) contains the most energy of the HRIR, and node 
(2,1) and (2,3) contain a little energy, while there is almost no 
energy in node(2,2). Moreover, in each node, most of the 
energy is represented by the largest coefficients. If these co-
efficiens are kept and the coefficients with small value in the 
begining and end part are discarded, the most energy of the 
original HRIR is preserved. 

10 20 30 40 50
-0.2

0
0.2

no
de

(2
,0

)

10 20 30 40 50
-0.1

0
0.1

no
de

(2
,1

)

10 20 30 40 50
-5
0
5

x 10-3

no
de

(2
,2

)

10 20 30 40 50
-0.05

0
0.05

Sample

no
de

(2
,3

)

 
Figure 6. Wavelet coefficients of the HRIR at θ =90° 

 

SIMPLIFICATION OF THE MODEL 

The nonzeros coefficients of the sparse filters in the model 
are the wavelet coefficients of HRIR. Thus, the model can be 
simplified by reducing the number of the wavelet coefficients.  

A threshholding algorithm was used to simplify the model. 
At each node of the wavelet tree,  the begining and end part 
of the wavelet coefficients, whose absolute value are smaller 
than the thresholded, are set to zero, and the middle part is 
unchanged, as show in figure 7.  
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Figure 7. Wavelet coefficients that is before (up) and after 
(below) thresholding process  

The threshold for each node is identical. However, it is not 
fixed and depends on the number of the wavelet coefficients 
that is preserved. For example, if more wavelet coefficients 
are preserved for a better reconstruction of the HRIR, a larger 
theshold is required. Hence, an algorithm for dynamic search-
ing the threhold according to the length of wavelet coeffi-
cients that are preserved has been designed. 

As an example, after thresholding process, the wavelet coef-
ficients in Figure 6 become the results showed in figure 8. 
There are only 25 nonzero coefficients in the  all nodes, while 
these 25 coefficients contain most information of the original 
HRIR. With these 25 coefficients, the error of the resulting 
model is only 0.7%.  
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Figure 8. The result after thresholding process in figure 6 

 

After thesholding process, the zeros at the beginning and 
ending can be cut. However the number of the zeros at the 
beginning must be saved because they are related to the time 
delay of each node (subband). They are modeled as the initial 
delay before each sparse filter. 

 

MODEL DELAY 

As shown in equation (7), the model introduces a time delay 
compared with the original HRIR. The delay depands on the 
wavelet function. However, it is usually very small. Tabel I 
shows the delay and corresponding wavelet function. More-
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over, the delay can be reduced greatly by reducing the initial 
delay before the sparse filters. But this operation should be 
done carefully . The reduction should be identical for all 
nodes (subbands) of all HRIRs. 

Table 1. Model Delay (samples) 
wavelet db4 coif5 sym9

Model dealy 18 84 48 

 

MODELING ERROR 

The relative energy error  is used here to evaluate the error 
between the original HRIR and the modeled HRIR[11], as 
defined by follows: 
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where ( )h n  is the orginal HRIR and ˆ( )h n  is the reconstruted 
HRIR from the model. The error depends on the number of 
wavelet coefficients preserved and the wavelet function. It 
also depends on the source directions. To give an overview, 
the average (across 72 horizontal source directions) and 
maximum error for all HRIRs are calculated and shown in 
table 2 and table 3 

Table 2. Average relative energy error (%) 
Coefficient 

number 20 25 30 35 

db4 4.78 2.51 1.40 0.84
coif5 4.14 2.15 1.15 0.65
sym9 4.16 2.20 1.17 0.68

Table 3. Maximum relative energy error (%) 
Coefficient 

number 20 25 30 35 

db4 7.61 3.94 2.84 1.81
coif5 8.01 3.80 2.12 1.74
sym9 6.92 3.75 2.10 2.00

 

COMPUTATIONAL LOAD 

The computational load of the model comes from two parts: 
reconstruction filters Gi(z) (i from 1 to 4) and the sparse fil-
ters ( )iL

iR z  (i from 1 to 4). The length of the reconstruction 
filter depends on the wavelet function, as show in table 4 

Table 4.  Length of the reconstruction filter Gi(z) (i=1 to 4) 
wavelet db4 coif5 sym9
Length 23 89 53 

The computional load of the sparse filters depends on the 
preserved wavelet coefficients. For example, if 25 wavelet 
coefficients are preserved, the nonzero coefficients of all the 
4 spares filters are 25 points totally. If db4 is chosen as the 
wavelet function, the total length of the reconstruction filters 
is 96 points. Thus, the computational load of the model is 
approximately equivalent to that of a 117 points FIR filter. 
However, this is the case of synthesizing a virtual sound im-
age only. When multiple virtual sound images are synthe-
sized, only the computational load of the sparse filters is 
multiplied, the computational load of the reconstruction fil-

ters is unchanged.  This means that the model is very efficient 
in synthesizing multiple virtual sound images.  

CONCLUSION 

A HRTF model is presented in this paper. The model consists 
of two parts: the reconstruction filters and the sparse filters. 
The coefficients of the reconstruction filters can be calculated 
from the wavelet reconstruction low-pass and high-pass fil-
ters. The coefficients of the spares filters are the upsampling 
of the wavelet coefficients of original HRIR. Therefore, the 
model is very easy to implement. 

After analyzing the HRIR by using 2 level wavelet packet, 
some wavelet coefficients are preserved to bulid up the 
model. Error of the model depends on the wavelet function 
and the number of the wavelet coefficients preserved. Results 
indicate that when 25 coefficients are used to build the model, 
the relative energy error is about 2.5% for db4 wavelet. 

When multiple virtual sound images are synthesized, only the 
computational load of the spares filters is multiple, the recon-
struction filters can be operated once. Thus, the model is very 
efficient for synthesizing multiple virtual sound images. 
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