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ABSTRACT 

There are several diseases that affect the human voice quality which can be organic or neurological. Acoustic analysis 

of voice features can be used as a complementary and noninvasive tool for the diagnosis of laryngeal pathologies. 

The degree of reliability and effectiveness of the discriminating process depends on the appropriate acoustic feature 

extraction. This work presents a parametric method based on cepstral features to discriminate pathological voices of 

speakers affected by vocal fold edema and paralysis from healthy voices.  Cepstral, weighted  cepstral, delta cepstral, 

and weighted delta cepstral coefficients are obtained from speech signals. A Vector Quantization is carried out indi-

vidually for each feature in the classification process, associated with a distortion measurement. The goal is to eva-

luate a performance of a classifier based on the individual and combined cepstral features. The average, the product 

and the weighted average are the different combination strategies applied yielding a multiple classifier that is more 

efficient than each individual technique. To assess the accuracy of the system, 153 speech files of sustained vowel 

/ah/ (53 healthy, 44 vocal fold edema and 56 paralysis) of the Disordered Voice Database from Massachusetts Eye 

and Ear Infirmary (MEEI) are used. Results show that the employed parameters are complementary and they can be 

used to detect vocal disorders caused by the presence of vocal fold pathologies. 

INTRODUCTION 

Voice production is a complex process that involves muscle 

movements, respiration, and the brain control as well as hear-

ing sensory system feedback [1]. Origins of voice disorders 

include structural, medical, and neurological alterations of 

the respiratory, laryngeal, and vocal tract mechanisms. Some 

pathologies are originated from maladaptive or inappropriate 

voice use. Other voice disorders are developed in direct re-

sponse to psychogenic factors. These various physical, voice 

use, and psychological influences indicate that many voice 

disorders and laringeal pathologies are provoked from more 

than one origin. For example, inappropriate vocal behaviors 

or excessive vocal demands may incite structural changes in 

the vocal mucosa [2]. In the presence of vocal fold patholo-

gies, significant changes appear in the voice caused by a 

modification of the excitation morphology (the distribution of 

mass on vocal fold and its stiffeness are increased). Patholo-

gies of the vocal fold include those that cause any alteration 

in its histological structure. These are classified as organic 

pathologies as nodules, polyps, cysts and edemas. Voice 

disorders can also be caused by other pathologies which are 

provoked by neuro-degenerative diseases such as paralysis, 

Parkinson‟s disease and multiple sclerosis [3], [4].   

Early detection of laryngeal pathologies, significantly in-

creases the effectiveness of treatment. The diagnosis is usual-

ly made by laryngoscopical exams, which are considered 

invasive, causing discomfort to patients. Digital signal 

processing techniques, performing an acoustic analysis for 

vocal quality assessment are a simple and noninvasive mea-

surement procedure. These techniques provide an objective 

diagnosis of pathological voices, and may be used as com-

plementary tool in laryngoscopical exams [3]5, [4]6.  

The main task of acoustic evaluation of pathological voices is 

related to feature extraction. Specific statistical parameters 

based on the linear model of speech production can be used 

as significant acoustic features. It is known that the voice 

signal is produced as a result of glottal pulses or a signal 

varying randomly, like noise excitation filtered by the vocal 

tract [4], [6], [7]. 

Pathology, such as Reinke‟s edema, polyps and paralysis  

affect the vocal fold or other components of the vibratory 

system, producing a more irregular vibration. Reikes‟s edema 

cause a excessive swelling that affects the entire length of the 

vocal folds and therefore the glottis closure usually is com-

plete [2]. A vocal fold polyp interferes in glottis closure and 

vocal fold vibration, and depends on the type and its location. 

The Paralysis provokes an inadequate vocal fold closure, due 

to the altered resting position of the paralyzed fold. In fact, it 

is widely known that pathological vocal folds can present 

variation in the cycle of the vibratory movement because of 

changes in the vocal folds elasticity. For other hand, by pa-

thology, such as vocal nodules, during vibration, the mass 

and stiffness of the vocal fold cover are increased, but the 

mechanical properties of the transition and body may not be 

affected [8].   
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Acoustic measures provide indirect observation of the voice 

problem and can help to identify the specific pathologies and 

its severity.  There are a large number of acoustic measures, 

most of which are based on direct extraction of acoustic fea-

tures.     

Essentially, two parametric methods based on the linear 

model for the human speech production mechanism ap-

proaches have been considered on the literature so far. The 

first one is obtained from Linear Predictive Coding (LPC) 

analysis. The second parametric approach is an LPC-based 

cepstral analysis [9]-[12].  

Cepstral analysis is applied to obtain a linear relationship 

between the excitation energy of the signal and the filter 

used. It can be very useful for the study of laryngeal disord-

ers, as it allows processing the signal of the glottis (excita-

tion) separately from the effects of vocal tract resonance, 

which facilitates the understanding of the changes that occur 

in the vocal folds. It is expected that any vocal disorders 

caused by morphological changes in vocal fold caused by a 

laryngeal pathology can be captured by Cepstral Coefficients 

[5]. 

In this paper we will use a parametric method based on cep-

stral analysis to discriminate pathological voices originating 

from vocal fold edema and paralysis from healthy voices. 

Cepstral (CEP), weighted cepstral (WCEP) delta cepstral 

(DCEP), and weighted delta cepstral (WDCEP) parameters 

are used as features to detect the irregularities of the patho-

logical voices in comparison with the normal voice. A vector 

quantization technique (VQ) was associated with a distortion 

measurement to classify the speech signal by each parameter. 

The VQ was trained with voices affected by the considered 

pathologies individually and the results will be used to build 

an effective method basis for detecting Reinke‟s edema from 

normal or paralysis from normal. The vocal impairments 

observed for each pathology are different. While by Reinke‟s 

edema the glottis closure is usually complete it is irregular 

and incomplete by vocal fold paralysis.  

To improve the performance of the cepstral classifiers, an 

approach based on multiple features classifiers is evaluated. 

This solution is based on the principle that by combining 

complementary information from distinct features classifiers 

a performance can be achieved which is better than that of 

any individual classifier. For that, three combination rules are 

considered:  the combination by average, by product and by 

the weighted average, which are modifications of the strate-

gies used in [13]. 

 

CEPSTRAL ANALYSIS OVERVIEW  

The Linear Predictive Coding (LPC) estimates each speech 

sample based on a linear combination of the p previous sam-

ples; a larger p enables a more accurate model. It provides a 

set of speech parameters that represent the vocal tract [6]. It 

is expected that any change in the anatomical structure of the 

vocal tract, because of pathology, affects the LPC coeffi-

cients.  Considering a healthy vocal tract, the speech disord-

ers observed in LPC coefficients are provided by the changes 

in the vocal folds. A linear predictor with prediction coeffi-

cients, α(k), is defined as a system whose output is 
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where p is the predictor order, and n-th sample of s(n). 

Considering that speech signal is the result of convolving 

excitation with vocal tract sample response by cepstral analy-

sis, it is possible to separate the two components. One step in 

cepstral deconvolution transforms a product of two spectra 

into a sum of two signals. In practice, the complex cepstrum 

is not needed. The real cepstrum is obtained by [14]: 
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Where X(k) is equivalent to sampling the Fourier transform 

of x(n) (windowed version of s(n) at N equally spaced fre-

quencies from w=0 to 2π and c(i) is the i-th cesptral coeffi-

cient of x(n). 

Cepstral coefficients can be computed recursively from the 

linear predictor coefficients, α(i), by means of  [14]: 
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The first derivative of the cepstral coefficients (Delta Cep-

stral Coefficients - DCEP) is given by [14],[15]: 
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where c(n,t) is the n-th LP coefficient at time t, ø is a norma-

lization constant and 2K+1 is the number of frames over 

which the computation is performed. 

The delta cepstral coefficients are obtained as a simplified 

version of (3), as it was proposed by:  
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where G is a gain term (for example, 0.375), p is the number 

of delta cepstral coefficients, K=2, n the coefficient index and  

i the frame of analysis [16]. 

In order to account for the sensitivity of the low-order cep-

stral coefficients to overall spectral slope and the sensitivity 

of the high-order cepstral coefficients to noise, cepstral 

weighting (liftering) is employed. 

The weighted cepstral coefficients (WCEP), cwi(n),  are ob-

tained by [14]-[17]: 

( ) ( ) ( ).i icw n c n w n        (6) 

The type of window used in this work was the band pass 

liftering (BPL), given by [15]: 
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where L is the size of the window. The BPL weighs a cepstral 

sequence by (6) so that the lower- and higher-order compo-

nents are de-emphasized.  



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

ICA 2010 3 

Weighted Delta Cepstral coefficients (WDCEP) associates 

the characteristics of weighted cepstral and delta cepstral by 

[14],[15]: 

( ) ( ) ( ).i icw n c n w n  
                      

(8) 

 

DATABASE AND METHODS 

The speech signals used were extracted from the Disordered 

Voice Database, model 4337, recorded by the Massachusetts 

Eye and Ear Infirmary (MEEI) Voice and Speech Lab [18].  

It includes more than 1,400 voice samples (i.e., sustained /ah/ 

and first 12 seconds of Rainbow Passage) from approximate-

ly 700 subjects. In this work, the analysis is applied in the 

sustained vowel /ah/ from 152 subjects. The selected cases 

are: 44 patients presenting vocal fold edema - 33 female (17 

to 85 years old) and 11 male (23 to 63 years old), most of 

them (32) with bilateral edema; 55 cases of paralysis – 30 

female (19 to 80 years old) and 25 male (15 to 77 years old) 

and 53 patients with normal voices which are composed of 21 

male (26 to 59 years old), and 32 female (22 to 52 years old). 

The discriminating process of voices, using individual fea-

tures, is made in two steps: training and test/classification 

(Fig. 1). First, the signals are pre-processed: speech signals 

are multiplied by a 20 ms Hamming window with an overlap 

of 50% and a filter of pre-emphasis (0.95) is also used. Then 

each cepstral parameters is calculated after LP coefficients 

(p=12). 

 

 Training 

Test Signals 
(Edema and normal) or 

(Paralysis and normal) 

Pre-processing 

Feature extraction 

 (cepstral analysis) 

Vector quantization 

Comparison 

(decision rule) 

Reference patterns 

Pre-processing 

Feature extraction  

(cepstral analysis) 

Classification: 

pathological/nonpathological 

Pathological Voices 

(Edema or Paralysis) 

 Test patterns 

Figure 1.  The discrimination process based on cepstral 

                       analysis. 

To each feature, two vector quantizers are employed: one is 

trained by using voices affected by vocal fold edema (Edema 

VQ Classifier) and the other one is trained by using voices 

affected by vocal fold paralysis (Paralysis VQ Classifier) 

[20]. 

The VQ-classifiers are applied to static feature vectors, which 

are computed for every analysis frame of the speech samples 

over a dynamic input sustained vowel /ah/. It is used 50% of 

pathological voices in the training phase. After the feature 

extraction, a codebook is generated using the Euclidean dis-

tortion measurement and the nearest neighbour rule is used to 

find the codevector. LBG algorithm to quantization and the 

least mean square distance for classification process are used 

[21]. 

In the test/classification phase, the other 50% of the patholog-

ical (edema or paralysis) and all normal voices are pre-

processed and after the feature extraction (test patterns), they 

are compared to the reference patterns obtained in the train-

ing phase. A distortion measurement (least square mean er-

ror) is associated to a threshold that gives the best separation 

between the classes (pathological/nonpathological). 

After obtaining the individual feature classifier results for 

each case (edema or paralysis), they are combined by the 

three rules: average, product and weighted average. It is ex-

pected an improvement in the classification rates when com-

paring to individual results. 

FEATURE COMBINATION 

The individual classification distortion values are combined 

2-by-2, 3-by-3 and 4-by-4 (Fig. 2) for each combining rule 

(average, product and weighted average).  

 

Combiner 

(average, product or weighted average) 

Individual classification  distortion 

measurement 

 

    CEP       WCEP      DCEP     WDCEP 

Final classification result 
 

Figure 2.  Overview of the Combined Feature Classifier. 

To evaluate the combined features, it is necessary to make 

the assumption that a speech signal must be assigned to one 

of the M possible classes and assume that L classifiers are 

available. The distortion measurement used by the ith QV-

classifier is denoted as di. Three combination rules have been 

employed: 

 

 Combination by Average: The value assigned to 

each class is the normalized distortions average of 

the VQ classifier outputs. 

. 

 
 

 Combination by Product: The value assigned to 

each class is the normalized distortions product of 

the VQ classifier outputs. 

 

 

 

 Combination by Weighted Average: The value as-

signed to each class is the weighted normalized dis-

tortions average of the VQ classifier outputs: 

 

 

where D denotes the distortion obtained after combination 

and i are the weights for each VQ classifier distortion. For 

the weighted average rule, the optimum weights are obtained 

by an exhaustive search procedure. 
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RESULTS 

The evaluation of performance is made by using the Efficien-

cy rate (E) measurement, which represents the correct classi-

fication of a given class when that is present, given by (Godi-

no-Llorente et al, 2006): 

E(%)= 100 .(CR+CA)/(CR+CA+FA+FR) (12) 

where: 

 CA: Correct acceptance - The presence of the pa-

thology is detected when that is really present;  

 (CR): Correct rejection - It is detected the correct 

absence of the pathology;  

 (FA): False acceptance - It detects the presence of 

the pathology when it is not present; and  

 (FR): False rejection - The presence of the patholo-

gy is rejected when, in fact, it is present.  

The results are divided in two cases for analysis: Edema x 

Normal and Paralysis x Normal. 

Edema x Normal 

Table I presents the individual cepstral features evaluation 

performance for Edema x Normal voices. The best result is 

obtained to delta cepstral parameter. 

The results for average, product and weighted average com-

binations are presented in Table II. In the average rule, an 

improvement of 5% related to the best individual case is ob-

tained when CEP, WDCEP and WCEP features are com-

bined. Efficiency about 96% is obtained when combining 

CEP and WCEP. However, in this case, the weighted average 

combination did not improve the average combination re-

sults. The best performance in discriminating normal voices 

form voices affected by vocal fold edema was obtained by 

the product rule with CEP and WDCEP combination. 

Table I- Individual cepstral classifier – Edema x Normal 

Feature CR(%) CA(%) FA(%) FR(%) E(%)

CEP 89 91 11 9 90

WCEP 94 86 6 14 90

DCEP 98 86 2 14 92

WDCEP 91 82 9 18 87  

 
Table II - Performance evaluation for the combined feature 

classifier (Edema x Normal) 

A (%) P (%) WA (%)

CEP, DCEP 94 97 94

CEP, WDCEP 95 98 95

CEP, WCEP 96 95 96

DCEP, WDCEP 90 91 90

DCEP, WCEP 94 95 94

WDCEP, WCEP 94 95 94

CEP, DCEP, WDCEP 93 95 93

CEP, DCEP, WCEP 96 95 96

CEP, WDCEP, WCEP 97 96 97

DCEP, WDCEP, WCEP 94 94 94

CEP, DCEP, WDCEP, WCEP 96 86 96

Combination rules
Combined Features

 
 

Figure 3 shows the distortion measurement distributions for 

normal voices and voices affected by edema for CEP and 

WDCEP parameters. As the VQ was trained with edema, the 

distortion distribution medians are higher to normal voices. 

The medians differences are clear in this figure, showing the 

ability of parameters in separating the classes In despite of 

the best classification rate using the parameters individually 

was obtained by delta cepstral coefficients (DCEP), the best 

performance in the combinatios was obtained for CEP and 

WDCEP, by product rule. Figure 4 shows the distribution 

data of the distortion measurements for the product combina-

tion for CEP and WDCEP.   

 
Figure 3. Distortion measurements distribution: normal 

voices and voices affected by vocal fold edema 
for CEP and WDCEP parameters. 

 

 

Figure 4.  Distortion measurements distribution of normal 
voices and voices affected by vocal fold edema  
when combining CEP and WDCEP by product 
rule. 

 

Paralysis x Normal 

Individual results obtained by cepstral analysis for Paralysis 

VQ Classifier is presented in Table III. The cepstral coeffi-

cients (CEP) give the best classification rate (84%). In Ede-

ma‟s case, the best rate is given by delta cepstral coefficients 

(92%). It is observed that individual classifiers based on cep-

stral analysis presented higher efficiency rates to Edema x 

Normal than to the case of paralysis x normal. This suggests 

an assumption that LPC-based cepstral analysis should be 

better to track the changes in voices caused by the organic 



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

ICA 2010 5 

pathology (edema) than to vocal fold pathologies caused by 

neurologic diseases as vocal fold paralysis. 

 

Table III - Individual cepstral classifier – Paralysis x Normal 

Feature CR(%) CA(%) FA(%) FR(%) E(%)

CEP 92 75 8 25 84

WCEP 88 74 12 26 81

DCEP 90 63 10 37 77

WDCEP 90 60 10 40 75  

The results obtained to the discrimination between voice 

affected by vocal fold paralysis and normal voices for aver-

age, product and weighted average combinations are pre-

sented in Table IV.  

 
Table IV - Performance evaluation for the combined feature 

classifier (Paralysis x Normal) 

Combined Features 
Combination rules 

A (%) P (%) WA (%) 

CEP, DCEP 87 81 94 

CEP, WDCEP 79 81 94 

CEP, WCEP 83 84 96 

DCEP, WDCEP 77 77 89 

DCEP, WCEP 79 80 93 

WDCEP, WCEP 79 79 94 

CEP, DCEP, WDCEP 78 81 90 

CEP, DCEP, WCEP 81 81 89 

CEP, WDCEP, WCEP 81 80 91 

DCEP, WDCEP, WCEP 78 79 84 

CEP, DCEP, WDCEP, WCEP 80 81 93 

  

To the average rule, it is observed an improvement of 6% 

(CEP and DCEP) related to the best individual case (WCEP). 

No improvement is given in relation to the individual cases 

when applying the product rule. The best result for weighted 

average rule is obtained to the CEP and WCEP combination, 

increasing 12% in efficiency rate to the best individual case. 

 
Figure 5 shows the differences between the medians of nor-
mal voices and voices affected by paralysis.  
 

 
Figure 5.  Distortion measurements distribution normal 

voices and voices affected by paralysis for CEP 
and WCEP parameters. 

As the VQ was trained with paralysis, the distortion medians 
are higher to normal. It is observed in Fig. 5 that CEP is 
really better in separating the classes than WCEP. The medi-
ans differences are higher to CEP than to the WCEP parame-
ter. The combination of them increases the effciciency rate 
and distortion distribution of the best performance (weighted 
average rule) is evaluated in Fig. 6. 
 

 
 

Figure 6.  Distortion measurements distribution of normal 
voices and voices affected by paralysis when 
combining CEP and WCEP by weighted average 
rule. 

 
 

CONCLUSION 

In this paper a parametric method based on cepstral, weighted 

cepstral, delta cepstral, and weighted delta cepstral coeffi-

cients is applied to discriminate pathological voices of speak-

ers affected by vocal fold edema and paralysis from healthy 

voices.  The efficiency parameters were evaluated individual-

ly and combined for the pathological voice detection prob-

lem. Results show that combination of these classifiers yields 

a significant performance improvement related to individual 

ones. This means that the parameters employed are comple-

mentary and can be used to detect vocal disorders caused by 

the presence of vocal fold pathologies.  

The combination rules presented different behaviour for each 

pathology considered. For edema, the product combination 

gives an efficiency rate of 98%, while to paralysis this rule 

did not improve the result of the best individual case.  For 

paralysis, the weighted average rule is better than the other 

combinations, yielding 96% of efficiency. However, for 

edema, this rule did not have any improvement related to the 

average. 

Future works will focus on the application of these tech-

niques while constructing a classification system to discrimi-

nate healthy voices from pathological voices as well as 

among different pathologies. The method is able to discrimi-

nating the differences of produced excitations in each case. 

Furthermore, it is intended to use other classifiers, such as 

Neural Network and/or Hidden Markov Models. 
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