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ABSTRACT 

Trackside systems for automatic monitoring of noise from train passbys are becoming more common.  Typically 
these will record an audio file for each passby, and download this file for spectral and other analysis.  Automatic de-
tection of the presence and level of wheel squeal from these files provides significant additional information for both 
operators and environmental authorities.  Recently in NSW, two groups have independently developed algorithms for 
detecting and quantifying wheel squeal.  Both are based on a spectral analysis, but details of the procedures differ.  
Outputs include the maximum level, SEL, duration and spectrum of squeal, and in one case also of flanging noise.  
This paper compares the procedures and outputs of the two algorithms, using a set of recorded audio files from train 
passbys.  Results indicate the potential of detection based on pattern-recognition techniques in this and similar appli-
cations, and also point to some issues associated with their implementation. 

INTRODUCTION 

Noise generated at the wheel-rail interface of a rail system 
can be broadly classified into four types [1]: 
• rolling noise; 
• wheel squeal; 
• flanging; and 
• impact noise. 

Wheel squeal and flanging are both associated with wheel-
rail interaction on curves, and the distinction between them, 
as well as the mechanism for their production, is subject to 
some dispute [2].  However, it is clear that this interaction 
sometimes generates a distinctive ringing noise that is 
strongly tonal, while for other passbys a broad-band high-
frequency sound is generated.  For some passbys both sounds 
may be produced.  In this paper the former sound will be 
described as “wheel squeal”, and the latter “flanging”.  Fol-
lowing [2], the term “curve squeal” will be used to describe 
either or both effects. 

Wheel squeal is a particularly important source of noise im-
pact because it is tonal in nature.  Tonal noise is known to 
cause more annoyance than non-tonal noise at the same level, 
either because of reduced masking by background sound [3], 
because tonal noise may be inherently more annoying due 
psychologically-based factors [4] or, most likely, both.  Many 
standards incorporate a positive “correction” when assessing 
the impact of noise when it is tonal in nature (e.g. [5]). 

Squeal and flanging both generally occur on curves, but as 
described below they do not occur reliably, and when they do 
occur their level can vary by over 10 dB between passbys at 
the same point.  Mitigation is possible, generally through the 
use of friction modifying agents – top-of-rail friction modifi-
ers in the case of squeal, and gauge face lubricators in the 
case of flanging.  However, despite advances in deploying 
and monitoring friction modifier applicators, they cannot be 

used on every curve where curve squeal may occur.  Hence 
some form of prioritisation is required to identify sites where 
tonal noise is most prevalent and causes most disturbance. 

Trackside systems for automatically monitoring noise from 
train passbys have been deployed in a number of locations 
recently.  These are typically designed to record the maxi-
mum and/or SEL noise level from each passby, with the ob-
ject of: 
• recording and tracking the overall train-related LAeq at 

the monitoring position; and 
• identifying individual noisy vehicles (or bogies), so they 

can be treated. 

The latter represents a particularly effective form of noise 
control, because it is often the case that overall exposure is 
dominated by the noisiest few vehicles. 

The object of the work reported here is to provide these 
trackside monitoring systems with the additional ability to 
detect the level of curve squeal in each passby, and prefera-
bly also to separate this into wheel squeal and flanging.  This 
allows for: 
• long-term logging of the range of curve squeal levels 

experienced, giving a reliable form of prioritisation for 
deploying friction-modifying devices; 

• verifying and tracking the effect of those devices to 
ensure that curve squeal is reduced and remains so; and 

• identification of vehicles that are particularly susceptible 
to curve squeal, for individual treatment. 
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SOURCES OF CURVE SQUEAL 

Wheel Squeal 

In the generally-accepted mechanism, wheel squeal results 
from lateral movement of the rail head over the track.  Under 
certain conditions this can result in a “slip-stick” interaction, 
which couples strongly to lateral vibrational modes of the 
wheel.  A model proposed by Huang et al [6] predicts, for a 
typical wheel geometry, maximum excitation of the 3rd and 
4th lateral modes, at frequencies of 1102 Hz and 1976 Hz 
respectively.  (A similar conclusion is reached by Brunel et al 
[7].)  This is consistent with typical results.  Huang et al’s 
model predicts approximately equal contribution from the 
high and low rails, which is contrary to previous experience 
[2], although some recent analysis indicates that in some 
cases squeal can arise from the high rail.. 

Models such as that in [6] predict a very narrow peak in the 
emission spectrum – in [6] the quoted damping ratio for the 
relevant modes is .0001, giving a bandwidth of less than 1 Hz 
at the relevant frequencies.  Vincent et al [8] quote a similar 
damping ratio of .0004.  Moreover, in these models the wheel 
(and rail) dynamics are separated from the contact dynamics, 
and hence there appears to be no mechanism for the squeal 
frequency to alter depending on rolling velocity, friction or 
any other gross parameters, except by differential excitation 
of different modes. 

Flanging 

The mechanism for flanging has been much less studied than 
that for wheel squeal.  It is generally considered to result 
from direct flange contact with the rail, although the exact 
mechanism for sound radiation is unclear.  Figure 1 shows a 
spectrogram of a passby exhibiting clear squeal with minimal 
flanging, while Figure 2 shows a passsby with significant 
flanging but little squeal.  (Some short sections of squeal can 
be identified.)  In this case the flanging noise is seen to con-
sist of a series of “chirps” - short signals with multiple broad 
resonances extending to very high frequencies and generally 
falling quickly in frequency before disappearing.  This sound 
would be very difficult to generate by the mechanism gener-
ally proposed for wheel squeal. 

Figure 3 shows a case where both flanging and squeal appear 
together.  It is notable that in this case the spectal “line” rep-
resenting the squeal is somewhat broader than in the “squeal 
only” case, and is not as constant in frequency.   Apparent 
broadening of the line is likely to be due to amplitude modu-
lation effects associated with the presence of flanging.  Fre-
quency change (apart from the obvious apparent change due 
to Doppler shift) could potentially be caused by deformation 
of the wheel under stess due to flange contact with the rail.  
This would impy that the outer wheel was squealing.  Alter-
natively, wheel vibration could be influnced by vibrational 
modes of the bogie as a whole. 

 

DETECTION OF CURVE SQUEAL 

The focus of this paper is on the detection and potential clasi-
fication of curve squeal from a passby event.  The algorithms 
described can be used in real time (with a small time delay in 
the case of the SoundScience algorithms).  However, we will 
focus on their implementation in permanent, low-power 
trackside noise monitoroing systems.  Such systems can: 
• automatically detect passby events using a magnetic 

wheel detector or similar device; 

 

 
Figure 1. Example of passby with squeal 

 

 
Figure 2. Example of passby with flanging 

 
• save a digital recording of the audio waveform – gener-

ally as 16 bit WAV format, sampled at 44,100 Hz; 
 
• automatically upload the file to a remote server after 

completion of the event; 
• analyse the file to detect curve squeal and other features 

of interest; and 
• save the results of the analysis in a database that can be 

interrogated on-line. 

Over the last 2 – 3 years the University of Wollongong and 
SoundScience P/L have both independently developed, or 
assisted in developing, systems to perform this task.  Moni-
toring systems of both types are currently in permanent op-
eration in NSW and elsewhere in Austalia.  The two algo-
rithms developed for squeal detection are similar, but differ 
in significant ways.  The two methodologies are compared 
and contrasted in the discussion below. 
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Figure 3. Example of passby with both squeal and flanging 

 

University of Wollongong (UW) Algorithm 

The University of Wollongong set out with the intention of 
separately estimating sound levels due to wheel squeal and 
flanging.  In both cases, detection is performed on the basis 
of a 1/24-octave spectrum, representing the current rms spec-
tum with “Fast” weighting.  This is updated continuously 
through the passby. 

Squeal is considered to be detected when one band between 1 
KHz and 10 KHz: 
• has the highest level of any band in the spectum; AND 
• has a level exceeding both the neighbouring bands by at 

least a threshold value (typically set at 10 dB). 

The level of the squeal, for this spectrum, is simply the level 
in the selected band. 

Note this assumes that the width of the peak is sighificantly 
less than 1/24-octave, and that if squeal is present it will be 
the dominant feature of the spectrum.  The total squeal en-
ergy for a passby is simply the energy sum of squeal levels at 
any times when squeal was detected. 

Flanging is detected separately on the basis of the ratio of 
energy between 2 KHz and 10 KHz (excluding any squeal) to 
the total energy in the spectrum.  Where this exceeds a 
threshold (typically 0.8), the energy in this range is consid-
ered as flanging noise.  Once again the total flanging level for 
a passby is the sum of the flanging levels at any times when 
flanging was detected. 

SoundScience (SS) Algorithm 

The algorithm developed by SoundScience is designed to 
detect any significant tonal noise, on the assumption that this 
is the most significant component for human reaction.  Flang-
ing is not currently detected.  However, some of the energy 
found as “flanging” in the UW algorithm is detected as 
squeal in the SS algorithm. 

The SS algorithm is designed to detect lower-level and less 
obvious tones than the dominant squeal considered by the 
UW algorithm, and to potentially detect multiple simultane-
ous tones.  Hence it is somewhat more complex than the UW 
algorithm.  It is based on standard pattern recognition proce-

dures used in image processing, in particular the Canny edge 
detection algorithm [9], applied to a spectrogram such as 
Figures 1-3.  The edge detection procedures are modified to: 
• detect a line rather than an edge; 
• privilege the detection of lines that change slowly in the 

vertical direction; and 
• remove a preliminary smoothing stage designed to cor-

rect for focal blur and shading in photographs. 

The algorithm proceeds as follows. 

 
1. Form a spectrogram from the recorded audio data, using 

a short-term Fourier transform.  In general an FFT of 
length 4096 with 50% overlap and using a Hamming 
window gives an appropriate trade-off between time- 
and frequency-resolution.  Frequency bins then have a 
width of 10.8 Hz. 

 
2. For each bin in the spectrogram, calculate a contrast 

value based on the schema in Figure 4.  The contrast for 
the target bin will be the difference, in dB, between the 
mean-square FFT magnitude in the line bins and that in 
the contrast bins.  Adjusting the width of the line, null 
and contrast bins allows for detection of narrower or 
broader lines.  Adjusting the number of bins included on 
the time axis gives more or less preference for horiozon-
tal lines.  The current implementation is designed to de-
tect lines that may be 50 – 100 Hz wide, and uses 7 line 
bins, with 4 null bins and 8 contrast bins on each side.  
Averaging is over 8 time frames (371 ms). 

 
Figure 4. Calculation of contrast value for each bin in a spec-

trogram 

 
3. Now join bins with high contrast values into lines.  Two 

threshold contrast values are defined – a Select Thresh-
old  (ST) that determines whether a new line is started, 
and a Connect Threshold (CT) that defines whether an 
existing line will be continued.  The current implemen-
tation has ST = 15dB and CT = 8 dB. 

 
Starting with the bin with the highest contrast (assuming 
this is greater than ST), join bins vertically above and 
below until their contrast falls below CT.  This defines 
the width of the line at that point, and the level associ-
ated with the line is the energy-sum of the FFT magni-
tudes in these bins. 
 
Now move forward and backward from the central bin, 
potentially moving up or down by one bin per frame, 
and define a line width and level for the adjacent frames.  
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Continue until no adjacent bin has a contrast greater 
than CT. 
 

4. Finally, select lines whose frequency is between 1 KHz 
and 10 KHz at some point, whose length exceeds 1 sec-
ond and whose total level exceeds a site-dependent 
threshold. 

 

 
 

Figure 5. Lines detected by the SS algorithm 

Figure 5 shows lines detected by the SS algorithm from the 
spectrogram shown in Figure 1.  Unlike the UW algorithm, 
the SS algorithm detects harmonics of the fundamental squeal 
frequency. 

 

COMPARISON OF RESULTS 

To compare the two algorithms, ten recorded passbys were 
selected for analysis.  They were recorded near a curve at 
Beecroft, NSW, using a monitor at 1.5m above ground and 
2m from the nearside rail.  Each recording was analysed us-
ing the UW and SS algorithms to determine whether squeal 
occurred (and/or flanging for the UW algorithm), and if so 
the LAmax and SEL levels arising from the squeal (and/or 
flanging). 

Figure 6 shows the results in terms of the maximum noise 
level (Fast speed) during the passby. 

First, the algorithms agree that passbys 1, 2, 5, 8 and 10 con-
tain squeal and passbys 4, 7 and 9 do not (although the UW 
algorithm finds flanging in passby 4).  The SS algorithm 
finds squeal in passby 3, whereas the UW algorithm does not.  
This is in fact a mis-classification – from the audio, the sound 
detected appears to be a short section of aerodynamic noise 
from the pantograph.  This emphasises that the use of more 
sensitive algorithms raises the chance of false positive identi-
fications. 

Where squeal is identified, the SS algorithm generally pro-
duces a higher level, due to the fact that it is more sensitive 
and can include multiple tones within the “squeal” compo-
nent.  The largest difference is in passby 10.  Figure 8 shows 
the “squeal” section of this spectrogram, indicating a very 
broad peak with significant frequency change.  As noted 
above, this appears to be characteristic of squeal that occurs 

in the presence of other processes.  Broadening of the peak is 
likely to be due to amplitude modulation. 
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Figure 6. Maximum sound levels detected by the SS and UW 
algorithms 
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Figure 7. SEL sound levels detected by the SS and UW algo-
rithms 

 

 

 
 

Figure 8. Detail from spectrogram, passby 10 
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The sound in this section of passby 10 is definitely identified 
audibly as squeal.  However this form of squeal is difficult to 
detect with the UW algorithm, and some sections of the 
“squeal line” shown are classified as flanging, or not classi-
fied at all.  Hence, although the SS algorithm indicates the 
maximum passby level is entirely due to squeal, the UW 
algorithm shows the maximum squeal level at about 10 dB 
below the overall maximum. 

Similar comments apply to passby 2, which is the passby 
shown in Figure 3. 

In terms of SEL, the agreement between the two algorithms 
is better (Figure 7), particularly if the squeal detected by the 
SS algorithm is compared with the total of “squeal” and 
“flanging” from the UW algorithm.  For passbys 1, 2, 5 and 
10, curve squeal is seen to represent the major part of the 
acoustic energy in the passby. 

Passby 8 is the passsby shown in Figure 2.  In this case, de-
tection of wheel squeal alone, even with the SS algorithm, 
clearly underestimates the total curve squeal noise. 

 

 CONCLUSIONS 

Automatic detection of curve squeal during remote monitor-
ing of rail noise can provide extremely useful information.  It 
allows prioritisation of sites for squeal mitigation measures; 
verification of the efficacy of those measures; and identifica-
tion of noisy vehicles. 

The algorithm used for detection and quantification of curve 
squeal should be considered when designing a monitoring 
system, as different algorithms may produce different out-
comes.   

If the focus is on detection of whether curve squeal occurs at 
all, and if the occurrence of false positives is a significant 
issue, then a spectrally-based algorithm such as UW gives a 
more robust and reliable evaluation than alternatives. 

However, if detection of the level of tonal noise, and its con-
tribution to the total noise in the passby, is important, consid-
eration should be given to a more complex pattern-
recognition-based algorithm such as SS.  Otherwise, noise 
levels from some passbys, particularly LAmax levels, may be 
underestimated by up to 10 dBA. 

Again, if detection of flanging noise, in the absence of 
squeal, is important, this cannot currently be offered by pat-
tern-recognition-based algorithms.  Providing a detailed spec-
trogram-based method of detecting flanging noise will almost 
certainly require a more solid understanding of the mecha-
nism of flanging. 
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