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ABSTRACT

Many recent studies have used multi-moment methods such as the CIP (constrained interpolation profile) method for
the analysis of acoustic wave propagation. The CIP method combines the method of characteristics and polynomial
interpolation. This method has less numerical dispersion and is more stable than the FDTD (finite-difference time-domain)
method. However, using the CIP method, numerical dissipation often causes a reduction in calculation accuracy. In order
to reduce dissipation, we apply this method using interpolation by a fifth-order polynomial. However, as this scheme
uses the physical values and their first- and second-order derivatives at the two nearest grid points, the computational
load increases slightly. We propose a new algorithm to reduce memory requirements and examine the applicability of
this scheme by computing wave propagations in two- and three-dimensional space. In this paper, we first derive the
characteristic equations for acoustic waves using this scheme and then propose our new algorithm to reduce the memory
requirement. Finally, we show some results of numerical simulations.

INTRODUCTION

The CIP (‘cubic interpolated profile’ or ‘constrained interpo-
lated profile’) method, a multi-moment method [9, 8, 4], was
proposed as a stable, low-dispersion algorithm developed for
the field of CFD (computational fluid dynamics) and applied to
many time-domain problems, including the analysis of acous-
tic wave propagation. In wave propagation analysis, the CIP
method in combination with the method of characteristics (MOC)
has been applied to simulate various wavefields and its appli-
cability has been compared to that of other methods, such as
the finite-difference time-domain (FDTD) method [3, 4, 7]. The
FDTD method is commonly used in the field of architectural
acoustics due to its simplicity and the ease with which it can
be implemented in software. However, this method introduces
numerical dispersion. The phase error of short-wavelength com-
ponents is quite large, which distorts the waveforms as time
progresses.

On the other hand, although the CIP method is low-dispersive,
it causes numerical dissipation [1]. It is expected that this effect
is especially large with certain wavefields for which simulations
easily accumulate numerical errors, such as those describing
rooms surrounded by rigid walls that generate many reflections.
In order to obtain meaningful simulation results, it is necessary
to reduce numerical dissipation.

In the CIP method, the wave profile is analyzed by interpolating
by a cubic polynomial between two grid points at which the
value of the wavefield and its first-order derivative are given.
One way to reduce the dissipation is to interpolate using a
high-order polynomial.

We adopt interpolation using a fifth-order polynomial instead of
a cubic polynomial. In this scheme, the wave profile is evaluated
between two neighboring points at which the values of the wave-
field and its first- and second-derivatives are given. This scheme
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is compact because it only uses two points; however, there are
many variables at each point, increasing the computational load.

In this paper, we apply this scheme using a fifth-order polyno-
mial to simulate wave propagation by solving an acoustic wave
equation and derive the characteristic equations of the wave.
Then we propose an algorithm to reduce the memory require-
ments. Finally we show some results of numerical simulations
for a simple rectangular model.

ANALYSIS

The phenomenon of the wave propagation in one-dimensional
space obeys the following equations expressed in terms of pres-
sure p and particle velocity u:

5 HpC =0, (1)
du 1dp
E"‘E;*Q (2)

where p is the medium density, and ¢ is the sound velocity.
Eq. (1) is the equation of continuity, and Eq. (2) is the equation
of motion in an acoustic medium.

From the above equations, we derive the two characteristic
equations:
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where f* = p+pcuand f~ = p— pcu are advection variables,
and superscripts + and — indicate forward propagation (¢ > 0)
and backward propagation (c < 0), respectively.

In the modeling of wave propagation based on MOC, Egs. (3)
and (4) are evaluated numerically using the CIP method.
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Using this method, usually the wavefield between two grid
points at which f* and their derivatives f'* = g& are already
known can be interpolated using a cubic polynomial. We will
refer to this scheme using the notation CIP3.

Interpolation by a fifth-order polynomial

In this paper, we interpolate by a fifth-order polynomial instead
of a cubic polynomial.

As shown in Figure 1, let the advection variable f(x) be defined
on the interval 0 < x < L. Define a uniform grid, x; =0 < x; <
x3 < -+ <xy < xy4+1 = L with a spacing Ax = x| — x;. At
any grid point x;, assume that the advection valuable f(x) and
its derivatives f] = g;, and f}' = h; are given.

¥ advection
T —
' | wave profile
! i
Xi—1 .—‘ Xj X

n 0
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&i-1 8i
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Figure 1: Symbols for adopting a fifth-order polynomial.

Let the wavefield between two neighboring points, x; and x;up
(iup =i — 1 for the forward propagation, and iup =i+ 1 for
the backward propagation) be interpolated using a fifth-order
polynomial,

6
F(x)= Z ar(x—x;)F 1. Q)

The six coefficients {ay, k =1,2,...,
mined by the six equations:

6} in Eq. (5) are deter-

JF 0°F
Flxi)=fi 5. ) =g, ﬁ(xi) = hi,
oF d°F
(xzup) flup7 g(xiup) = Siup» W(xiup) = hiup~
(6)
From above equations, the coefficients gy, are as follows:
ar — _6(fi _fiup) _ 3(gi+giup) _ (hi _hiup)
! D5 D* 203
_ 15(fi_fiup) 8gi+7giup 3hi_2hiup
=" T p T
_ 10(f; _fiup) 2(3gi+ 2giup) 3h; — hiup
BETTTp T T
ay=hi/2, as=g;, as=fi @)

where D = —Ax for the forward propagation, and D = Ax for
the backward propagation.

Let the advection variable at the n-th timestep be expressed by
the superscript n. Then the profiles of f, g and 4 at the (n+1)-th
timestep can be approximated by shifting the previous profiles
using Eq. (5),

I~ F(x;—cAr)

=18+l 3N 2E 4 GME+ 1T (8)

l

oF
g’.’Jrl ~ g(x,- — CAl‘)
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=5a1E* +4ar8 +3a3E% + MIE + g ©)
2
F
W~ 5oy (xi )
=200, &3 +12aE% 4 6a3E + 1, (10)

where At is the timestep and & = —cAt.

We obtain the wavefield at the (n+ 1)-th timestep by linear
summations of the forward and backward advection results:

n+1,+ n+1,— n+1,+ n+1,—
o= fi A S O/
! 2 o 2pc ’
n+1,+4+ n+1,— n+1,+ n+1,—
0 pn+l 8i +& b} MnJrl 8i —&i
xD; -3 XU 42[)6 »
n+1,+ n+1,— n+1,+ n+1,—
dupt! = Bk P I Bl
XX | 2 ’ xx Uy 2pC )
(11

where 0y and Jy, are defined as the spatial derivatives d /dx and
92 /02, respectively.

We will refer to the scheme described by Eqgs. (5)—(11) by the
notation CIPs.

Applying CIP5 to a multi-dimensional wavefield

In applying the CIPs scheme to multi-dimensional acoustic
wave propagation, we adopt a direction splitting technique [5,
9].

In the three-dimensional case, first, we calculate the wavefields
propagated in the x-direction, { p*, w1, 0, p*, "1, ...}, from
{p",u",0:p",0xu",...} and their derivatives using Eq. (11).
Next, in the same way, we calculate the wavefields propagated in
the y-direction, { p**,v"*1, op**, V",
and then calculate the wavefields propagated in the z-direction
{pLow L o pm Ll aw, .} from {p** W, O p** dw, .. b

To use direction splitting, it is necessary to evaluate the prop-
agations of the derivatives in the perpendicular directions. Ta-
ble 1 shows the required calculations for the x-direction us-
ing the CIP5 scheme and using the CIP3 scheme. In Table 1,
CIPs[f,g,h,x| indicates interpolation using f, g = dxf and
h = dxxf. Similarly, CIP3[f, g,x] indicates interpolation using
f and g. Naturally, the same number of propagations must be
evaluated in the y- and z-directions as in the x-direction.

Table 1: Required propagations in the x-direction to be evalu-
ated using the CIP5 and the CIP3 schemes for a 2-D or a 3-D
wavefield.

CIPs CIP3
CIPs[f,g,h.x] CIP3[f,g,]
Q| CIPs[dyf,dyg, dyh,x] CIP3[0yf,d)g,x ]
| CIPs[dyy f, )y, 3‘)11 x|
fa) CIPs (0. f,d.g,0:h,x] CIP3[d. f, agx]
h CIPs[0.. f, 37Zg, 87Zh x| CIP;3 [0y f,0y:8,X]

CIPs[0,.f, 0 V~g7 h ,X]

e 0
"f »zzgvavz x]
vee S+ 0

CIPs[9

The CIP5 scheme has more variables than the CIP; scheme.
For two- and three-dimensional wavefields, the CIP5 scheme
has (27 x 2 timesteps = 54) and (108 x 2 timesteps = 216)
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variables at each grid point, respectively. Obviously, the com-
putational load of the CIP5 scheme is greater than the CIP3
scheme.

In order to reduce the computational load of the CIP5 scheme,
the following new computation algorithm is proposed.

First, we express the combined form of forward and backward
propagation from Egs. (8)—(10) as the vector equation:

fn+1,i
i
T
n+l, x| _ agE | o1 n,+ n,t n,+ n,+ n,+
8i =M |:fz 8i hi fiup giup hiup ’
1,+
hn+ 5
i
(12)
where

Bi B> Bs Pio EPu  Pi2
M*=|+By  Bs +Bs Pz P Ehis|. (13)

Br +Bs  Bo P *Pi7  Pis
The 18 elements {fB,,, m = 1,2,...,18} in Eq. (13) are given
by

Br=(8-))(8+385+65%)/5°,

Br=(8-&))(8>+38¢)/8*,

B =8%(8-§)°/(28%),

Pa=—30&%(86-¢)*/8°,

Bs=(8—38)(8 —§)°(5+5¢)/8",

Bo=&(8—&)*(26 —58)/(287),

Br=—60£(8-28)(8-&)/8°,

Ps = —128(36 ~5£)(8 - £) /8",

o= (8 —&)(8> —88& +108%)/8°,

Bro=&3(108% ~156¢ +65%)/8°,

B =45 -38)(8-¢&)/8%,

Bia=&(6-8)%/(28%),

i3 =30%(8—&)*/8°,

Pra=—&*(65 —&)(26 —3¢) /8",

Pis =&7(36 —56)(8 - §)/(28%),

Prs=60§(8 —£)(8-¢)/5°,

7 = —12§(26 —58)(6 - &)/8°,

Bis = £(387 — 1286 +105)/(28%), (14)
where 6 = |c|Ar.

Let the matrix Q" consist of the variables involved in one
advection calculation using the CIP5 scheme. In the case of
CIPs[f,g,h,x], Q" is given by

Q'=[p" u' op" U Oup" k'], (15

where p", u", dyp", ou", dyp" and Jy,p" are the column-
vectors,

P = (P15 P Pir) s (16)
“n:(urllvug7"'7u;llfl7uxfl+l)T’ an
" = (0up, 0uph - xply ey ) (18)
3xu = (axld’f,axugw‘~7ax’451’/17axuzfl+l)T> (19)
dup" = (3xxp'f,3xxl7§» e »axxpnMaamplr\l/I+1)T7 (20)
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Ductd = (Detd), Dt .., Dty ity )T 21)

Then, we perform the following six matrix multiplications:
Q" Faaa = [aij] Q" Fyyp = [ai)] .
0" Guaa = [bij], Q" Gy = [bij]
Q" H g4 = [cij] , Q"'Hyp=[¢ij]. (22

The six matrices Foq4, Fsup> Gadd> Gsub» Hadd and Hgyp, in
Egs. (22) are given by

Bio 2B Bio
1 PC[l;lo 0 *%Cﬁlo
—Pn 0 11
—— 2
Faa 2 |=pcBit  —2pcBy  —pcPun 23)
Bi2 2B Bi2
pcBiz 0 —pcBin

Bio 0 —Bio
pcBio 2pcPr pcPio
B 2B —Bn 24)

Fsub:ﬁ —pcfun 0 pcPn

Bi2 0 —Bi2

pcBrz 2B5  pchin

—Bi3 0 B3

| _,/)36[313 —2%6[34 —%Cﬁw

14 2Ps 14
add = — 2
Gaaa = 3 pcPia 0 —pcPig (25)

—Bis 0 Bis

—pcPis  —2pcfs  —pcPis

Bz 2B+ Pz

| *%CﬁIS 0 PCIL;B

0 —

Gup = 14 14 2%
ST 0pc | pePia 2pcBs  Pua (26)
—Bis  —2Bs  —Pis
—pcBis 0 pcPis
Bis 287 Bis
| pcBis 0 —pcPis

— 0
Hoyy— Bi7 Bi7 @7

T2 |=pcBi; —2pcBs —pcPir
Bis 23 Bis

pcBig 0 —pcPis
Bis 0 —Bis
| PC£16 2PCII;7 chm
_ ) _
How— L 17 3 17| 2%
ST 2pe |—peBiz 0 pePir (28)
Bis 0 —Bis

pcPis  2pcPfy  pcPis

As shown in Figure 2, p;, u; and their derivatives (i =2,3,,... ,M —
1,M) at the n+ 1-th step can each be expressed as the sum of
three terms:
1
Pl =ai 14 aip+ai s,
1 N ~ A
Wt =a; 4+ aia+ a3,
1
Pt =bi1 1 +bin+bi 3,
. . N .
! ™ =bi 11 +bip+bit1 3,
1
AP =cic) FeinFciv 3

1 4 . o
Ot =81 1 +8in+Civ1 53 (29)
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Figure 2: Representing physical variables (Eq. (29))

Boundary conditions

At x1 and xp741, the physical variables and their derivatives
can not be obtained directly from Egs. (29). Instead, these
variables are determined by using a boundary condition formula.
However, in many cases, this is a relatively straightforward
calculation.

For the case i = 1, if p; = (a272 +a3y3) and 1) = ((lAz_’z +aA3v3),
then clearly p; — pcuy is equal to the backward propagation
flth L=, Similarly, pas+1 + pciipr11 is equal to the forward prop-
. n+1,+

agation fj,. |

For example, if the boundary at x; is non-reflecting, as shown
in Figure 3, the forward propagation is zero. Therefore, from
Egs. (11), p’l""I and u’l"“ are given by

Pt = T 2= (py — peiy) /2,
i = =17/ (2pe) = —(p1 — peiin)/(2pc). (30)

The derivatives of p"*! and u} ! are obtained similarly.

Many other boundary conditions (i.e., periodic, reflecting bound-
aries) can be handled easily in a similar manner.

Non-reflecting
Boundary

!
ntl ot
1

14 uy

. =0 A= (py — peiy)

'
d
'
'
'
'
'
'
'
|
o
x Ad L d
1
'

Figure 3: Example of computing boundary variables (non-
reflecting).

Coding

The six matrix multiplications in Eqs. (22) are all of the same
form and can be evaluated sequentially. Moreover, using these
multiplications and evaluating the boundary conditions, it is
easy to re-construct the forward or backward advection vari-
ables from the results of the matrix multiplications.

Therefore, it is not necessary to maintain in memory the values
of variables at two time-steps (n and n + 1); if a working array
of the size of Q" in Egs. (15) is prepared, this scheme requires
memory for one time-step only.

First, let Q at the n-th timestep consist of the variables used for
the CIP5 scheme in Eq. (15) and let Q be copied to the work
array. Then, the results evaluated by the CIP5 scheme at the
n+ 1-th timestep in Eqgs. (29) overwrite Q (that is, Q is updated).
Other propagations in Table 1 are computed similarly.
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In addition, Egs. (22) assumes Q" is the matrix in column-major
order (the columns are listed in sequence in liner memory).

RESULTS

Numerical stability

Figure 4 shows the numerical stabilities of the CIP5 and CIP3;
schemes using the von Neumann method in the one-dimensional
case. The stabilities of the up-wind (1st), the Lax-Wendrof
and the FTCS (2nd) schemes are also illustrated. Let CFL =
(lc|At/Ax) be the CFL (Courant-Friedrichs-Lewy) number. It
has been proved analytically and numerically that the CIP
scheme is stable [2, 6] for 0 < CFL < 1. As shown in Fig-
ure 4, the CIP5 scheme has lower attenuation of the amplitude
than the CIP3 scheme for high frequencies.

CFL =0.25
0 (a)

© 05
(b) CFL =0.5
0
0 /2 ”
6 [rad]
‘ —— CIPs —— CIP3 —— Upw —— LxWf FTCS

Figure 4: Comparison of numerical stabilities of CIPs, CIP3, 1st
up-wind (Upw), Lax-Wendrof (LxWf) and 2nd FTCS schemes
by using the von Neumann method. G is the amplification factor
and 0 is the phase angle. (a) CFL = 0.25, (b) CFL =0.5.

Multi-dimensional wavefields

Figure 5 shows a rectangular area (Ly X Ly = 8 m x 8 m) for
a numerical simulation in two-dimensional space. The grid
spacing is Ax = A0.04 m, defining an 200 x 200 grid. There is
a sound source at the center of the area, ro = (0,0). The initial
pressure (r = 0) is given by the spatial gauss function,

po(r)=e 714, r=|r—r|, 31)

where dj determines the width of the spatial Gauss function,
which here is defined as dy = /27 fy /c. The frequency fp refers
to the peak frequency in the spectrum of the wave expressed in
Eq. (31).

We calculate the wave propagations in this numerical model
using the CIP5 scheme and using the CIP3 scheme. We use
two types of CIP3 scheme, Type-C and Type-M. The Type-M
scheme uses a first-order up-wind scheme to calculate deriva-
tives in the perpendicular direction. This method has lower
accuracy; however, it has the advantage of using less memory.

Figure 6 shows the sound pressure calculated using each method
at the receiving point r = (Ly/4,Ly/4). The parameters values
used are CFL = 0.25, 0.5 and fy = 230, 460 Hz.

In the case of CFL = 1, interpolation by a polynomial is unnec-
essary for evaluating wave propagation. In order to examine the
interpolation accuracy of each scheme, we use the results of the
case CFL =1 as a reference.
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Figure 5: Rectangular wavefield in 2-D space.

As shown in Figure 6, for the case fy = 230 Hz, all the methods
are fairly accurate. On the other hand, for the case fi = 680 Hz,
the accuracies of the Type-C and the Type-M scheme worsen
while the CIP5 scheme remains relatively accurate.
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Sound presseure [Pa]
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0 100 200 800 900 1000

Time [ms] Time [ms]
fo =460 Hz
| —CFL=025 ——CFL=05 Ref

Figure 6: Numerical results in a 2-D rectangular area using
CIPs, Type-C and Type-M for f = 230 Hz and 460 Hz.

Figure 7 shows the moving averages (100 ms intervals) of the
sound pressure level (SPL) at the receiving point r. As shown
in Figure 7, when the source signal contains only relatively
low frequencies (fo = 230 Hz), all methods are fairly accurate.
However, when the source signal includes high-frequency com-
ponents, the accuracies of the Type-C and Type-M methods
get worse over time. For the case fy = 680 Hz, the accura-
cies of Type-C and Type-M are reduced by about 3 to 5 dB at
t = 5000 ms and about 6 to 8 dB at t = 1000 ms relative to the
reference (CFL = 1). On the other hand, the CIP5 method stays
relatively accurate.
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Figure 7: Comparison of moving average of sound pressure
level for fy = 230 Hz, 460 Hz and 630 Hz.
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Figure 8: Comparison of power spectrum at = 100 ms and
1000 ms: The FFT length is 2048 points.

Figure 8 shows the power spectrum at ¢ = 500 ms and ¢ =
1000 ms. As shown in Figure 8, the spectrums of both the Type-
C and the Type-M schemes are maintained relatively well for
low frequencies, but degrade for high frequencies. On the other
hand, the CIP5 method has an accuracy that does not get worse,
independent of the frequencies.

In order to evaluate the error of each method, the following
formula is defined:

N N
error = ;{P"(')—P?ef(r)}2 / ;{Pi'ef(r)}z (32)

where N is the interval steps, p"(r) is the pressure and p!'.(r)
is the pressure for the case CFL = 1 (non-interpolated) at the
receiving point r, respectively.

Table 2 shows the results of the error analyses at ¢ = 0, 200,
400 and 600 ms using Eq. (32). The interval is 200 ms. Early
(t = 0 ms), the errors of all the methods are relatively small. As
time progresses, the error grows larger. Especially, Type-C and
Type-M methods tend to have larger errors at high frequencies
and at large CFL numbers. This is the result of numerical errors
accumulating in the wavefield when many reflected waves are
involved.

Similar trends appears in the three-dimensional case as the two-
dimensional case. Figure 9 shows a rectangular box with rigid
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Table 2: Result of error analysis using Eq. (32).

fo=230Hz, CFL =0.5

Interval CIPs Type-C Type-M
0-200ms 1.48x1073 1.69x107° 2.34x1073
200-400ms  1.09x 1073  2.57x1073  6.50x 1073
400-600ms  2.05x1073  556x1073 1.36x 1072
600-800ms 4.22x 1073  1.08x 1072 2.35x102

fo=230Hz, CFL =0.25

Interval CIPs Type-C Type-M
0-200ms  5.58x 10710 599x10% 7.99%x1073
200-400ms  4.23x107°  3.61x1073 4.45x107°2
400-600ms  1.21x107%  8.13x1073 9.33x 1072
600-800ms  2.36x107%  147x107%2 1.45x10°!

fo =460 Hz, CFL = 0.5

Interval CIP5 Type-C Type-M
0-200ms 8.19x103 3.09x102 631x1072
200400 ms 4.69x 1072 1.00x10"!  1.67x 107!
400-600ms  1.11x10""  1.79%x10°! 257 x 107!
600-800ms 1.85x10~" 236x10"! 3.01x107!

fo =460 Hz, CFL = 0.25

Interval CIPs Type-C Type-M
0200ms 2.92x10°% 442x102 1.55x10°1
200-400ms  1.27x107>  1.27x107"  0.39x 107!
400-600ms  3.49x 1070  2.02x10°!  521x107!
600-800ms 6.00x 107> 2.44x107'  5.84x107!

walls (5§ m X 7 m x 3 m) in the three-dimensional space. There
is a sound source at the center of the box, ry = (0,0,0). The
grid spacing is Ax = A0.04 m, defining an 125 x 175 x 75 grid.

Figure 10 shows the contour maps resulting from calculating
sound pressure in xy-plane. As shown in Figure 10, the CIPs
scheme maintains a lower level of dissipation than the Type-C
scheme, even as time passes.

Source point ry = (0,0,0)

Ax = Ay =0.04 m

[m] Y S c=3435m/s
= /[m] p = 1.205 kg/m’
15 & -

Figure 9: Rectangular wavefield in 3-D space.

CONCLUSIONS

The CIPs scheme using interpolation by a fifth-order polyno-
mial has lower dissipation than the CIP3 scheme, especially at
high frequencies. Moreover, collapse over time of the wave-
forms is reduced by using this scheme. Although the computa-
tional load of the CIPs scheme is higher than the CIP3; scheme,
the memory requirements can be substantially reduced by mak-
ing improvements to the algorithm.
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