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ABSTRACT 

Broadband active noise equalization algorithm is utilized to shape the noise spectrum in order to match human pref-
erence. The stable condition of the algorithm is studied in this paper. Analysis shows that the phase shift of the shap-
ing filter, whose magnitude response defines the desired noise spectrum, has a significant effect on the stability of the 
system. The stable range of the secondary path modeling phase error is larger than 180o if the phase shift of the shap-
ing filter is between -90o and 90o, and smaller than 180o if it is out of the range. Such result suggests that a shaping 
filter with a phase response between -90o and 90o can achieve the desired noise spectrum with better stability. Simula-
tions are presented to validate the conclusions. 

INTRODUCTION 

Active Noise Control (ANC) is a technique that reduces noise 
by adding noise with opposite phase, which is very effective 
in attenuating low frequency noise. Different from ANC that 
aims at minimizing noise, Active Noise Equalization (ANE), 
or known as Active Sound Quality Control, or Active Sound 
Profiling, is utilized to change the spectrum of the residual 
noise to a desired shape. It can be used to retain the wanted 
sound to a suitable level, or to change the noise spectrum to 
match human preference.  

ANE algorithm is actually derivative of the filtered-X least 
mean square (FXLMS) algorithm which has been widely 
used in ANC 0. In ANE, a pseudo-error other than the resid-
ual noise picked by the error microphone is minimized. Kuo 
错误！未找到引用源。  first proposed the time domain 
ANE algorithm and later the frequency-domain version 0. 
Gonzalez 0 and Diego 0 reported the application of the algo-
rithm to reshape multifrequency noise.  

The effect of secondary path modelling error on the stability 
of the algotithm, a practical problem in active control of 
sound, has been extensively studied in narrowband ANE. It 
causes the residual noise level deviate from the desired value, 
known as misequalization 0. It is also a major factor that 
affects the system convergence and stability 0. The phase 
scheduled command FXLMS (PSC-FXLMS) algorithm, a 
new narrowband ANE algorithm proposed by Rees and Elli-
ott 0 , circumvents the misequalization problem and has bet-
ter stability. Nevertheless, to the best of the authors’ knowl-
edge, no research on the stability of broadband ANE has been 
reported. The shaping filter in the algorithm introduces dif-
ferent gain and phase shift at different frequencies. While in 
narrowband ANE, no phase shift is introduced. This is the 
major difference between them.  

The paper is organized as follows. In Section 2, the stable 
condition of the broadband ANE system is derived. Investi-

gation of the condition in Section 3 shows that the phase shift 
of the shaping filter has a significant impact on the system 
stability. The stable range of the secondary path modeling 
phase error is larger than 180o if the phase shift of the shap-
ing filter is between -90o and 90o, and smaller than 180o if it 
is out of the range. Numerical simulations are presented in 
Section 4 to demonstrate the results yield from the analysis. 
Conclusion and further work are stated in Section 5. 

STABLE CONDITION OF BROADBAND ANE 
ALGORITHM 
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Figure 1. Block diagram broadband ANE algorithm 

The block diagram of the broadband ANE algorithm is 
shown in Figure 1, where W(z) is the adaptive control filter; 
S(z) and  are the secondary path and its model; C(z) is 
the shaping filter, whose magnitude response defines the 
desired spectrum of the residual noise. x(n), u(n), d(n) and 
e(n) are the reference signal, control signal, primary noise 
and residual noise respectively; is the estimated primary 
noise,  is the filtered reference signal,  is the 
pseudo-error signal that need to be minimized by the adaptive 
control filter. An adaptive control filter with I taps can be 
updated using FXLMS algorithm:  
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where μ  is the step size of the adaptation process, 
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 is the filter weights, 
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r̂
)+ T  is the vector of past 

values of , and superscript T  denotes transpose of the 
vector. 

The stability of the algorithm is analyzed in the frequency 
domain. Suppose the complex amplitudes of the reference 
signal and primary noise at frequency ω  are represented as 
Xω

 and Dω
, then the residual noise and pseudo-error signal 

can be written as 
ωωωωω XnWSDnE )()( += ,                       (2) 
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where , C( )W nω ω
, Sω

 and Ŝω
 are the frequency responses at 

ω  of the respective filters. When , the control 
filter and the residual noise converges to 
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If there is no modelling error, i. e., , then the spec-
trum of the residual noise satisfies: 

ωω SS =ˆ

2 2( ) 2E C Dω ω∞ = ω
,                               (6) 

and the goal to shape the residual noise is attained. The 
pseudo-error signal can be represented by the convergent 
value of the control filter as 

ˆ( ) [ ( ) ][ ( ) ( )]E n S S S C W n W Xω ω ω ω ω ω ω′ = + − − ∞ ω

∞

.       (7) 

The control filter is updated in the frequency domain accord-
ing to 

**ˆ)()()1( ωωωωω μ XSnEnWnW ′−=+ .                 (8) 

Substitute Eq. (7) into Eq. (8), and define the difference be-
tween the current adaptive filter weight and its convergent 
value as , then Eq. (8) is turned into ( ) ( ) ( )W n W n Wω ω ωΔ = −

)(]})ˆ(ˆ[ˆ1{)1 *2 SSXn ωωωμ +−=+ .   (9) ( nWCSSW ωωωωω Δ−Δ

Suppose the relationship between the secondary path and its 
model is represented by 

ω
θ

ωω
ω SeaS j ⋅=ˆ .                            (10) 

where aω  and ωθ  are the magnitude and phase error, then 
the convergence of W(z) requires that 
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Note that μ , , ωa 2
ωX  and 2

ωS  are all positive real. If 

μ  is small enough, then the algorithm is stable when the 
following condition sustains: 

0]})1(1[Re{ >−+−
ω

θ
ω

θ ωω Ceae jj .              (12) 

where Re{} denotes the real part of the complex number. 
Thus a strict stable condition of broadband ANE algorithm is 
that Eq. (12) is satisfied for all frequencies. In Eq. (12) one 
can see that different from ANC whose stability depends on 
the phase error of secondary path model solely, stability of 
ANE is determined not only by the magnitude and phase 

error of the model, but also the gain and phase shift intro-
duced by the shaping filter. 

DISCUSSION OF THE STABLE CONDITION 

Eq. (12) can reveal whether an ANE system is stable under 
specific modelling error. Now we will investigate the rela-
tionship between the shaping filter and the stable modelling 
error range. 

Let , then Eq. (12) can be transformed into a 
trigonometry form as 

cjceC θ
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where . Then we can calculate the range 

of 
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φ , which is )270,90()90 °°∪°,90( °−∈φ , and Eq. (13) 
can be simplified as Eq. (15) according to the property of 
trigonometry function: 
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Eq. (15) implies that the range of  is significantly varied 
by 

ωθ

cθ . If , then the right side of Eq. (15) is 
larger than 0. So the range of 

°<<°− 9090 cθ
φθω −  that satisfies Eq. (15) is 

larger than . And since °180 φ  is a constant determined by 
the shaping filter, so the range of  is also larger than . 
On the other hand, if 

ω

°
θ

<

°180
<° 27090 cθ , then the right side of 

Eq. (15) is smaller than 0, and the range of  that satisfies 
the inequality is smaller than 180 . When c = 0.5, the rela-

tionship between the stable phase error range and  under 
various phase shift is shown in Figure 2.  
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Figure 2. Relation between 

ωθ  range and  when c = 0.5 ωa

One can see that for a given desired gain, a smaller shaping 
filter phase shift guarantees better stability at the same mag-
nitude error. In the case of °<<°− 9090 cθ , the stable phase 
error range increases as the magnitude of the model increases. 
And as it gets large enough, the algorithm can be stable if 
subjected to any phase error. However, the °<<° 27090 cθ  
case goes toward the opposite trend. Large model magnitude 
will result in a system impossible to be stable. The 

ωθ  range 
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is almost the same for both cases when the model magnitude 
is small, which approaches  as  gets smaller. °180 ωa

NUMERICAL SIMULATIONS 

In the simulations presented in this section, two shaping fil-
ters, Cmax(z) and Cmin(z), are considered. Their transfer func-
tions are  
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Cmax(z) is a maximum phase filter with two pairs of zeros 
outside the unit circle, and Cmin(z) is its minimum phase 
counterpart. Their magnitude responses are depicted in Fig-
ure 3, and phase responses in Figure 4.  

 

0 0.2 0.4 0.6 0.8 1-10

-5

0

5

ω/π (rad/

M
ag

ni
tu

de
 (d

B
)

s)  
Figure 3. Magnitude response of Cmax(z) and Cmin(z), which 

are the same 
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Figure 4. Phase response of Cmax(z) and Cmin(z) 

Two simulations are presented here. First, the stable condi-
tion of broadband ANE as shown in Eq. (12) is validated. 
Then according to the discussion of the stable condition, we 
will compare the stability when Cmax(z) and Cmin(z) are used 
as the shaping filter. 

Validation of the stable condition 

The impulse response of the secondary path used in the simu-
lation is shown as Figure 5. Suppose the magnitude of the 
secondary path model is 20dB smaller than the actual path 
and there is no phase error, that is,  and 01.0=ωa °= 0ωθ . 
Cmax(z) is used as the shaping filter in this simulation. In such 
circumstance, the relationship between the frequency ω  and 

the value of  is given in Fig-
ure 6. Judging by Eq. (12), the algorithm is not stable in the 

]})1(1[Re{ ωω
ωω Ceae −+ θθ jj−

[ ]rad/s 62.042.0 ππ  frequency band.  

The reference signal is generated by passing the white noise 
through a fourth order Butterworth bandpass filter whose 
passband is [ ]rad/s 62.042.0 ππ . After running 1000 
simulations, the ensemble average of the pseudo-error signal 

 can be calculated, as shown in Figure 7. Convergence 
is not possible when using a positive step size, but is wit-
nessed if it is a negative one. Since the step size is positive 
when the model matches the actual path, this result means the 
algorithm is not stable, which conforms to the prediction by 
Eq. (12). So, the stable condition in Eq. (12) is capable to 
judge whether the algorithm is in a stable state.  
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Figure 5. Impulse response of the secondary path 
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Figure 6. Value of  for all 

frequencies when Cmax(z) is the shaping filter. 
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Figure 7. Ensemble average of the pseudo-error e’(n) 

Stability comparision when using Cmax(z) and Cmin(z) 
as the shaping filter 

The stability of using Cmax(z) and Cmin(z) as the shaping fil-
ters is compared here. These two filters have the same magni-
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tude response, so if there is no modelling error, both of them 
will result in the same desired residual noise spectrum. How-
ever, they differ drastically in phase response. The phase shift 
of Cmax(z) exceeds the ( 9  bound around 0 ,90 )− ° ° rad/s 2.0 π  
and rad/s 8.0 π , while Cmin(z) stays in the bound for all fre-
quencies. According to the analysis of the stable condition, 
Cmin(z) can tolerate larger modelling error and is more stable 
than Cmax(z).  
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Figure 8. Range of stable modelling phase error 

ωθ  when 

magnitude error aω  is -20dB 
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Figure 9. Range of stable modelling phase error 

ωθ  when 

magnitude error aω  is 0dB 
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Figure 10. Range of stable modelling phase error 

ωθ  when 

magnitude error aω  is 20dB 

Figure 8 to Figure 10 compares the range of the stable model-
ling phase error 

ωθ  when different shaping filter is used. 
When the magnitude of the model is 20dB smaller than the 
actual path, the range of 

ωθ  is larger when Cmin(z) is used as 
the shaping filter at low frequency. When the magnitude of 
the model is the same with the path, at the frequency between 

[0 0.6 ] rad/sπ , the algorithm can tolerate any phase error 
when Cmin(z) is used. While the range of 

ωθ  shrinks drasti-

cally between the [0.05 0.45 ] rad/sπ π

.15 0.35 ] rad/s

 frequency range if 
Cmax(z) is the shaping filter. The difference is even more evi-
dent when the magnitude of the model is 20dB larger than the 
path. In this case, Cmin(z) can guarantee absolute stability. 
While there is no way to stablize the algorithm at the fre-
quency range of [0 π π  and [0.7 0.9 ]π π  
rad/s when Cmax(z) is used. 

Figure 11 depicts the distribution of stable modelling phase 
error 

ωθ  when the magnitude of the model is 20dB smaller 
than the actual path and Cmax(z) is the shaping filter, while 
Figure 12 shows the Cmin(z) case. Non-stable phase error is 
shown in black and stable phase error is shown in white. 
Comparing these two figures, one can see that the two shap-
ing filters have similar distribution, except in the low fre-
quency range. 
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Figure 11. Distribution of stable modelling phase error 

ωθ  

when magnitude error aω  is -20dB and Cmax(z) is the shaping 
filter. 
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Figure 12. Distribution of stable modelling phase error 

ωθ  

when magnitude error aω  is -20dB and Cmin(z) is the shaping 
filter. 
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Figure 13. Distribution of stable modelling phase error 

ωθ  

when magnitude error aω  is 0dB and Cmax(z) is the shaping 
filter. 

Figure 16. Distribution of stable modelling phase error 
ωθ  

when magnitude error aω  is 20dB and Cmin(z) is the shaping 
filter. 

 
Figure 13 and Figure 14 depict the distribution of stable mod-
elling phase error 

ωθ  when the magnitude of the model is the 
same with the actual path, where Cmax(z) and Cmin(z) are used 
as the shaping filter respectively. Figure 15 and Figure 16 
shows the cases when the magnitude of the model is 20dB 
larger than the actual path. These figures confirm that a shap-
ing filter whose phase shift is within the ( 9  bound 
can guarantee better stability to the ANE algorithm. 
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CONCLUSIONS 

The stable condition of broadband ANE algorithm is derived 
and analyzed in this paper. Such condition is strict enough to 
assure correct judgment of whether the algorithm is stable 
when secondary path modelling error occurs. Analysis of the 
condition shows that the stable modelling error range is lar-
ger for a shaping filter whose phase shift lies within the 
( 90 ,90 )− ° °

( 90 ,90 )

 bound. That means a shaping filter with the de-
sired magnitude response and a phase response between 
− ° °  can achieve the control objective with better 

stability. Further work will focus on designing such shaping 
filter with specified magnitude response. 

Figure 14. Distribution of stable modelling phase error 
ωθ  

when magnitude error aω  is 0dB and Cmin(z) is the shaping 
filter. 
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