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ABSTRACT 

Condition monitoring and fault diagnosis is essential to the effectiveness and reliability of machinery. To improve the 
accuracy of fault diagnosis, a novel diagnostic model based on support vector data description (SVDD) and Demp-
ster-Shafer (D-S) evidence theory is proposed. In the method, time and frequency domain fault features are firstly ex-
tracted, and used as input vector of single SVDD fault classifier, which is trained according to normal and few faulty 
data. Then take identifying result of single SVDD classifier at different measuring point around machinery as inde-
pendent evidence source, and so the evidence set is constructed. Based on unified discernment frame of fault diagno-
sis, all evidences are aggregated by Dempster’s combination rule. Through multi-level inforation fusion, it can make 
full use of measuring information and resolve the problem of single classifier’s misrecognition. Experiment results 
show that proposed algorithm improves identification precision of fault diagnosis and deal with the contradition be-
tween classifiers effectively.  

1 INSTRUCTION 

Rotating machinery has been widely equipped in some heavy 
industries. To guarantee its effectiveness and reliability, con-
dition monitoring and fault diagnosis is very necessary. Gen-
erally, it usually deploys several sensors at different point 
around diagnostic machinery to obtain sufficient status in-
formation. For large and complex machinery, it may be diffi-
cult to establish a mathematical model accurately to identify 
the machinery’s status. However, artifical intelligence tech-
niques can provide an important solution, and have been 
applied successfully to plant diagnostics, control, identifica-
tion, and so on.  

Fault dianosis can be seen as a problem of pattern recognition. 
Various intelligent methods, such as artifical neural network 
(ANN) [1, 2] and support vector machine (SVM) [3-5], have 
been applied to fault diagnosis of machinery. It requires char-
acterize normal data in a way that distinguishes it from faulty 
data. However, acquisition of whole abnormal data set of 
diagnositic machinery would require intentional destruction 
in several ways. Nevertheless, faulty situations are possible, 
but expensive, to generate. Above existing classification 
approaches are not well suited for handling this type of prob-
lem, because they seek to develop decision functions using 
predefined classes including normal and faulty data. Thus, it 
needs a method that utilizes only normal data. Support vector 
data description (SVDD) developed by Tax and Duin is very 
useful for such a one-class classification problem with small 
or even no faulty data [6]. Its basic idea is to define a bound-
ary around samples with a minimum volume by introducing 
kernel functions. The nonparametic nature of SVDD would 
be quite useful when sample distribution is abnormal or when 
no prior knowledge about the distribution is available. In 
addition, applying of SVDD to fault diagnosis of machinery 

permits a flexible decision boundary that uses various nonlin-
ear kernel functions. 

For the reason of strong noise or sensor’s flaws, single fault 
SVDD classifier may have the problem of low accuracy and 
uncertainty of recognition.  In addition, multi-sensor data 
acquisition is adopted for the need of comprehensiveness 
machinery fault diagnosis. Thus, it need to aggregate multi-
channel information to make reasonable decision. Dempster-
Shafer (D-S) evidence theory developed by Dempster and 
Shafer [7], which has more rigorous reasoning process than 
the probability theory, provides an important way for expres-
sion and combination of uncertainty information, and has 
obtained widespread application in uncertainty reasoning, 
decision analysis and information fusion [8-10]. In addition, 
it can construct basic probability assignment function of evi-
dence objectively according to output result of single SVDD 
classifier.   

Based on above considerations, a novel fault diagnosis algo-
rithm based on SVDD and D-S evidence theory is proposed. 
The organization of paper is as follows. In section 2, we in-
troduce fault diagnosis method in detail. Then numerical 
examples are given to show the efficiency of the proposed 
approach in section 3. Conclusions are made in section 4. 

2. FAULT DIAGNOSIS ALGORITHM BASED ON 
SVDD AND EVIDENCE THEORY 

2.1 Fault Diagnosis Model 

Deploy n sensors at different measuring points around diag-
nostic machinery. In other ways, we have to aggregate n-
channels measuring information to obtain correct fault diag-
nosis. The structure of fault diagnosis model based on SVDD 
and D-S evidence theory is showed in Figure 1. As can be 
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seen, the algorithm is made up of four parts: faulty feature 
extraction, fault classification, evidence combination, and 
decision making.   

The main reasoning process is as follows. Firstly, time or 
frequency domain fault features are extracted from vibration 
signals using traditional signal processing method. Collected 
normal and faulty data from each measuring point are used to 
train SVDD fault classifer respectively. Then obtained fault 

features are used as input vector of trained SVDD model to 
identify. Finally, take classifier as independent evidence 
source, and the basic probability assignment function of evi-
dence can be constructed according to classifier’ output re-
sults. All evidences are aggregated based on Dempster’s 
combination rule to make full use of multi-channel identify-
ing information and resolve the contradiction between classi-
fiers. Diagnosis result can be obtained according to max 
BPAF decision rule. 

 
Figure 1. Fault diagnosis algorithm based on SVDD and evidence theory 

2.2 Fault Feature Extraction  

We can’t make sure which feature is sensitive to mechanical 
fault beforehand. Thus, refering to existing research results, a 
complete time and frequency domain fault features are ex-
tracted from vibration signals.  

A) Time-Domain Features 

The time-domain vibration signal contains rich status and fault 
information. Currently, dimensional and dimensionless charac-
teristic parameters are commonly applied. The dimensionless 
parameters, such as mean (xmean), maximum (xmax), average 
amplitude (xa-amp), root amplitude (xr-amp), mean square root 
amplitude (xmsr-amp), which can be extracted by signal analysis 
and processing, increase as fault develops. Given vibration 
signal x (t), the definition of parameters is as follows: 
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The dimensionless parameters, such as waveform index (Swave-

form), impulsion index (Simpulsion), peak index (Speak), tolerance 
index (Stolerance), and kurtosis index (Skurtosis), are insensitive to 
machinery’s working conditions including speed or load, but 
very sensitive to the fault when working conditions change. 
Their computational methods are as follows:  
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B) Frequency-Domain Features 

With the emergence and development of fast Fourier transform 
(FFT), frequcncy spectrum analysis has been widely used in 
fault diagnosis of machinery. The amplitude and shape of vi-
bration signal’s frequency spectrum are different when machin-
ery works under various operating conditions. Thus, choose 
frequency domain features as one of vectors in fault feature 
space. 

Given rotating machinery’s speed n revolutions per minute, its 
base frequency (fbase) is n/60. Usually, the amplitude spectrum 
at fbase, 2 fbase and 3 fbase contribute different to machinery’s 
normal and faulty status. In addition, energy spectrum at corre-
sponding feature frequency band is also sensitive to fault classi-
fication of machinery.   

C) Time-Frequency Domain Wavelet Energy Features 

Usually, vibration signal contains some rich nonstationary fault 
information. Traditional FFT analysis method, which transform 
only in time or frequency domain completely, can’t express 
signal’s time-frequency domain partial feature.  Wavelet packet 
decomposition method, which has high frequency resolution at 
low-frequency and high time resolution at high-frequency, can 
obtain such partial feature. For example, to certain signal x(t), 
its 3-levels decomposed process is as shown in Figure 2. At 
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first level, it decomposes x(t) into x1(t) and x2(t) with equal 
frequency band respectively, and so on. 

According to decomposed signals x111(t), x112(t), x121(t) , its 
corresponding wavelet energy rations coefficient Er1, Er2, 
Er3 can be extracted, and used as one of vectors in fault fea-
ture space.  

 
Figure 2. Wavelet decomposition 

The above time, frequency, and time-frequency domain fea-
tures can construct a fault feature space, which will used as 
input of classifiers to diagnose. 

2.3 SVDD Classifier Design 

Given a training data set{ , 1,2, , } n
i i l= ⊂ ℜx , the enclosing 

sphere S is characterized by its center  and radius , the goal 
is to minimize the sphere, and keep all training objects inside 
its boundary, its sketch map in two dimensions is shown in 
Figure 3. 

a R

 

Figure 3. Sketch map of SVDD 

The structural error to minimize is: 
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To allow for the possibility of some samples falling outside of 
the sphere, the slack variable iξ is introduced to relax the con-
straints. Then, the sphere can be described as follows: 
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Where, the variable C controls the trade-off between the num-
ber of errors and the volume of sphere. The following Lagran-
gian is constructed: 
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Where， ,i iα β are the Lagrange multipliers.  Setting the partial 
derivatives of   aboutL , , iR a ξ to 0, we obtain: 
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So, the dual formulation is 
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Objects with ix 0iα > are called support vectors (SVs) of the 
description. SVs lie on the boundary (if 0 i Cα< < ) or outside 
the boundary (if i Cα = ) of the sphere. We can see that the 
center of the sphere is the linear combination of the SVs. As 
shown in Eq. (7), the problem of SVDD is stated in terms of 
inner products. For more flexible boundaries, inner products of 
samples can be replaced by a kernel function , 

where satisfies Mercer’s theorem [11]. This implic-
itly maps samples into a nonlinear feature space to obtain a 
tighter and non-linear boundary. The use of a kernel function 
allows the computation of dot products in a nonlinear feature 
space without the use of nonlinear mappings. Commonly used 
kernel functions include the Gaussian 

( , )i jx x ( , )i jK x x

( , )i jK x x

2 2( , ) exp( / 2 )i j i jK σ= − −x x x x  as well as the polynomial 
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d

z

functions. Different kernel functions re-

sult in different boundaries, and the polynomial function, in 
general, doesn’t produce good results in SVDD [6]. 

If the distance of new sample z  to the center of sphere is 
smaller or equal than the radius R, it will be accepted as a tar-
get object. Then the state of can be judged by: 
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2.4 Evidence Combination Model 

Every SVDD classifier gives its identifying results. Taking 
each SVDD classifier as an independent evidence source, the 
following evidence combination model is established to make 
valid decision and decrease the recognition uncertainty of sin-
gle classifier.  

A) BPAF Construction of SVDD Fault Classifier 

According to evidence theory, the frame of discernment is con-
stituted by all possible mutually exclusive and exhaustive 
propositions of the identifying objects. Thus, discernment 
frame of fault diagnosis can be noted by , 
where set elements

1 2 3{ , , }A A AΘ =

1A , 2A  and 3A  denotes normal status, rotor 
unbalance, rotor friction, etc. The corresponding spheres are   

( 1,2,3, )iS i = .  

Based on identifying result of SVDD, the constructive method 
of evidence’s mass function is as follows. As shown in Figure 4, 
suppose the relative distance of new sample z  to the center of 
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sphere is , which can be calculated by SVDD algorithm. 
The basic probability assignment value of set element 

iS id

iA is /
/

i i

i ii

d R
d R∑

. Thus, the BPAFs of each SVDD are obtained.  

 

Figure 4. BPAF of evidence 

B) Evidence Combination

Because multiple SVDD classifiers provide different assess-
ment of the same frame of discernment according to their own 
mass functions, combination is a good solution to obtain more 
relevant information. Demspter gives a useful evidence combi-
nation rule, which is defined as follows [7]: 

Let m1 and m2 are the BPAFs of same discernible frame, the 
focal elements are 1 2{ , ,..., }iA A A and 1 2{ , ,..., }jB B B  respec-
tively, the combination rule is as follows: 
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Where,  called the orthogonal sum, and the conflict de-
gree .  

⊕

1 2( ) ( )
i j

i jA B
k m A m

∩ =∅
=∑ B

C.   Decision Rule 

Final diagnosis result is obtained according to maximum value 
of the basic probability assignment functions. , the 
BPAFs of 
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1A and 2A are as follows: 
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Let 1 2,ε ε be the threshold value, if it satisfies 
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Then, element 1A  is the object.   

3 EXPERIMENT ANALYSIS 

Three class data of rolling machine, including normal, rotor 
imbalance, and rotor friction, are simulated on ZT-3 rotor vi-
bration simulation test-bed provided by Nanjing DongDa vibra-
tion instrument factory. We installed four acceleration sensors 
at its different location P1, P2, P3 and P4. The data sampling 
rate is 25.5 KHz. Each class gathers 100 samples, and the data 
length is 20,000 points. The cross-validation rate between train-
ing and testing samples is 0.3. The revolution of rotor is 2000 
rpm. 

All possible time and frequency-domain statistical features are 
extracted. From spectrum curve of vibration signal, as shown in 
Figure 5, we can see that its base frequency fbase is 33Hz, which 
accords with theoretical value (2000/60=33.33 Hz).  
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Figure 5. Frequency spectrum 

Thus, we choose max amplitude and total energy between fre-
quency band (32-34) Hz, (65-70) Hz, and (128-135) Hz as fre-
quency domain features. In time-frequency domain, we decom-
pose vibration signal into 3 layers using ‘db5’ wavelet, and 
obtain 8 wavelet energy coefficients Er1, Er2, Er3, Er4, Er5, Er6, 
Er7, and Er8 at third level, which are also used as one vector of 
feature space.    

Based on same Gaussian kernel function (set the value of σ  to 
1), the correct recognition rate of SVDD classifier taking dif-
ferent fault feature as input is shown in Table 1. We can see 
that the recognition precision of SVDD classifier using all 24 
fault features is 91.67%, which is better than single feature. It 
can satisfy engineering application.  

Table 1. Recognition rate of SVDD classifier 
Number Type Recognition rate 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

mean 
maximum 

average amplitude 
root amplitude 

mean square root amplitude 
waveform index 
impulsion index 

peak index 
tolerance index 
kurtosis index 

maximum amplitude A32-34
maximum amplitude A65-70 

 maximum amplitude A128-135
totoal energy E32-34 
totoal energy E65-70

 totoal energy E128-135
wavelet energy coefficients Er1
wavelet energy coefficients Er2
wavelet energy coefficients Er3
wavelet energy coefficients Er4
wavelet energy coefficients Er5
wavelet energy coefficients Er6
wavelet energy coefficients Er7
wavelet energy coefficients Er8

55.00% 
66.67% 
60.00% 
58.33% 
56.67% 
58.33% 
55.00% 
68.33% 
66.67% 
75.00% 
63.33% 
65.00% 
75.00% 
78.33% 
73.33% 
83.33% 
73.33% 
81.67% 
66.67% 
58.33% 
75.00% 
66.67% 
68.33% 
66.67% 

25 all features 91.67% 

Suppose the discernment frame is 1 2 3{ , , }A A AΘ = , and the evi-
dence set contains 4 independent evidences E1, E2, E3, and E4, 
which are constructed from detected vibration signal at P1, P2, 
P3 and P4 measuring point. The BPAFs of m1, m2, m3 and m4 
are as showed in Table 2, where the elementΘ  denotes uncer-
tainty. All evidences were fused by Dempster’s combination 
rule, and the result is:  
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( ) 0.0016, ( ) 0.9934
( ) 0.0050, ( ) 0.0000
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According to Eq. (11), the decision object is A2, which indi-
cates rotor unbalanced fault. 

Table 2. BPAFs of Evidences 
BPAF A1 A2 A3 Θ  

m1(E1) 0.1477 0.7338 0.1003 0.0182
m2(E2) 0.0384 0.4369 0.5069 0.0178
m3(E3) 0.2165 0.6576 0.1182 0.0077
m4(E4) 0.1277 0.7596 0.1020 0.0138

From table 2, we can see that the identifying result of E2 is 
conflict with E1, E3 and E4 seriously. After evidence aggrega-
tion, it can make a reasonable decision and avoid misrecogni-
tion of single SVDD classfier 2.  

4 CONCLUSION 

A novel fault diagnosis algorithm of machinery based on sup-
port vector data description and D-S evidence theory is pre-
sented. The established single SVDD classifier has high recog-
nition precision of machinery fault. From the combination of 
multi-SVDD classifiers based on D-S evidence theory, it can 
make full use of monitoring information and solve the mis-
recognition problem of single SVDD classifier. Experiment 
results show that proposed method based on SVDD and evi-
dence theory is feasible and effective.  
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