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ABSTRACT 

In this paper, we propose a novel classification procedure for distinguishing between normal and abnormal respira-
tory sounds on the basis of stochastic approach. The main characteristic of our procedure is that two stochastic mod-
els are used to detect abnormal respiratory sounds precisely: (1) hidden Markov models (HMMs) for acoustic spectral 
features and (2) bigram models for the occurrence of acoustic segments in each inspiratory/expiratory period. The 
classification procedure comprises a training process and a test process. In the training process, acoustic models for 
normal and abnormal respiratory sounds are trained using a transcribed database. In the test process, the classification 
procedure detects the segment sequence with the highest total likelihood and yields the classification results. Our pro-
cedure achieved a classification rate of 84.2% between normal and abnormal respiratory sounds. Experimental results 
revealed that for the classification, use of the segment bigram led to a 4.8% reduction of error rate in comparison with 
the classification rate of a conventional method that uses deterministic rules to describe segment sequences instead of 
the segment bigram. 

INTRODUCTION 

The auscultation of lung sounds is one of the most popular 
medical examination methods used to identify respiratory 
illnesses. The auscultation of lung sounds is also useful be-
cause patients are able to avoid the adverse effects of radia-
tion and the physical strain and pain associated with com-
puted tomography (CT), magnetic resonance imaging (MRI) 
or endoscopic inspection. Abnormal respiratory sounds usu-
ally appear in lung sounds obtained from patients. These 
sounds, such as wheezes, are caused by abnormalities of the 
lungs and bronchial tubes; they are called “adventitious 
sounds.” Figure 1 shows an example of a spectrogram of 
abnormal respirations. In these respirations, two periods of 
wheeze sounds are shown. The intensity and distinctness of 
adventitious sounds are very low. These sounds look like 
environmental noises, which are frequently mixed with lung 
sounds. To detect the adventitious sounds correctly, then, in-
depth experience and knowledge that doctors possess are 
required. 

Children are sometimes reluctant to visit the hospitals when 
sick. There are also a number of people who find it difficult 
to visit hospitals frequently due to their living conditions. 
These individuals eventually visit the hospital after develop-
ing a serious disease such as heavy pneumonia. In these cases, 
the automated detection of abnormal respiratory sounds using 
a stethoscope at home could alleviate the unpleasant condi-
tions, and appropriate medical treatment could be adminis-
tered to these patients at an early stage. 

Several studies have been conducted on the acoustic analysis 
of breath sounds from the view point of the detection of spe-

cific adventitious lung sounds [1-4]. In these studies, large-
scale lung-sound databases were prepared to obtain reliable 
experimental results. These studies were not, however, aimed 
at developing devices for the detection of abnormal respira-
tory sounds at home; instead, they were aimed at assisting 
doctors in hospitals to make diagnoses. 

The objective of our study purpose was to develop a home-
use technological device to detect abnormal respiratory 
sounds. For this purpose, we collected lung sound data from 
patients and healthy subjects and then developed a classifica-
tion procedure for distinguishing between normal and ab-
normal respiratory sounds on the basis of a maximum likeli-
hood approach using hidden Markov models (HMMs) [5,6]. 
To calculate the likelihood of normal/abnormal respiration, 
we assumed that one section of each inspiratory/expiratory 
period consisted of a time series of acoustic segments that 
express specific acoustic features such as adventitious sounds. 
Preliminary classification results indicated that the stochastic 
method related to acoustic HMMs is promising, but we still 
used deterministic rules to express the occurrence of acoustic 
segments in abnormal respiratory sounds. The use of deter-
ministic rules might not be useful in order to achieve a higher 
classification performance.  

To clarify this ambiguity, we attempt to devise a bigram 
model of acoustic segments instead of using deterministic 
connection rules among acoustic segments. For calculating 
the total likelihood of each inspiratory period, we add the 
acoustic likelihood derived from acoustic HMMs and the 
occurrence likelihood of acoustic segments derived from the 
segment bigrams.  
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The classification procedure comprises a training process and 
a test process. In the training process, acoustic models for 
normal and abnormal respiratory sounds are trained using a 
transcribed database. Furthermore, the segment bigrams in 
abnormal respirations are trained using the transcription. In 
the test process, the classification procedure detects the seg-
ment sequence with the highest likelihood and yields the 
classification results. To enable precise acoustic modeling in 
this procedure, each acoustic model for adventitious sounds 
and breath sounds is used to express abnormal respiratory 
sounds. Preliminary experimental results revealed that the 
segment bigram demonstrated an increase in the classifica-
tion rate in comparison with that of a baseline method that 
uses deterministic connection rules for acoustic segments. 
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Figure 1. Spectrogram example of abnormal respirations 

LUNG SOUND DATABASE 

Recording 

Lung sounds from 109 patients with pulmonary emphysema 
and 53 healthy subjects were recorded in three hospitals. 
These sounds were divided into two sets according to the 
type of recording instrument (stethoscope) used. In one of the 
sets recorded in each hospital, a condenser microphone was 
attached to the subjects’ chest and back using a rubber cou-
pler. We refer to this data set as “Set A.” In the other set, an 
electronic stethoscope incorporating a piezoelectric micro-
phone was used. This set is referred to as “Set B.” These two 
sets were recorded in different hospitals and the quantity of 
ambient noise in Set A was much larger than that in Set B. 
The acoustic characteristics of these two sets were thus sig-
nificantly different. There were six recording points on the 
body: two points on the front and four points on the back. In 
this study, the recording sounds from the second intercostal 
space on the subjects’ front right were used for the experi-
ments, as shown in Figure 2. 

○

 
Figure 1. Recording point of the second intercostal space 

Each lung sound was divided into several respiratory phase 
segments. These segments were labeled according to the 
respiratory phase (inspiratory or expiratory) and diagnostic 
state (normal or abnormal). Each respiration was tested using 
our proposed procedure to classify abnormal and normal 
respiration. The number of normal/abnormal respiratory peri-

ods in these sets is listed in Table 1, where Set A+B consists 
of all data in Set A and Set B. 

Table 1. Number of respiratory periods for experiments 
Respiratory Set A Set B Set A+B 

Normal 206 348 554 (36%)
Abnormal 679 311 990 (64%)

Hand Labeling 

We consider an abnormal inspiratory/expiratory period to be 
composed of segments with acoustic characteristics. In order 
to determine the diagnostic state using a statistical method, 
we defined the segments according to their acoustic features 
and assigned a symbol to each segment. The respiratory data 
was hand-labeled using the symbols. Suppose an inspira-
tory/expiratory period w comprises N segments: let the i-th 
segment be wi )1( Ni ≤≤ . Then, we have 

Ni wwwwW LL21= ,                                   (1) 

where the beginning time of segment wi+1 is the end time of 
segment wi. In our database, one abnormal respiratory period 
comprises several segments, and one normal respiratory pe-
riod comprises one breath segment ( ). 1=N

In order to examine how detailed segmentation should be 
carried out in order to effectively capture the acoustic fea-
tures of abnormal respiration, we prepared three types of 
segmentations: Labels 1, 2, and 3. The relations among these 
labels are shown in Figure 3 where [_] indicates the acoustic 
symbols. Label 1 indicates only adventitious sounds seg-
ments (A) and breath sound segments (BA) that do not con-
tain adventitious sounds. In Label 2, the adventitious seg-
ments were classified into three kinds: continuous sound 
segments (CA), discontinuous sound segments (DA), and 
unclassifiable segments (UA) that are difficult to classify 
them to discontinuous or continuous segments. In Label 3, 
the discontinuous segment is classified into four types of 
sound segments: coarse crackle segments, fine crackle seg-
ments (C), pleural friction rub segments, and unclassifiable 
segments (UD). The continuous segment in Label 3 is also 
classified into three types of sound segments: rhonchus seg-
ments, wheeze segments, and unclassifiable segments (UC). 
This hierarchical construction of these labels was designed on 
the basis of the classification used by the American Thoracic 
Society (ATS). We introduced three kinds of unclassifiable 
labels (UA, UD and UC) to handle ambiguous data.  

DIAGNOSTIC STATE DETECTION 
PROCEDURE 

Formulation 

Let the occurrence probability of the segment sequence W be 
P(W): 

             )()( 21 Ni wwwwPWP LL= .                              (2) 

In this study, we use a segmental bigram to calculate P(W): 

             ( )∑ = −≈
N

i ii wwPWP
1 1|)( .                                    (3) 

The total likelihood, composed of the acoustic likelihood 
derived from HMMs and the segmental sequence likelihood 
derived from equation (3), is calculated using a weight fac-
torα . The diagnostic state (normal/abnormal) that gives the 
segment (sequence) W  with the highest likelihood is the 
classification result as given below.  

ˆ
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         ( ) ( )WXPWPXWP
W

|loglog)|(maxarg +=α .  (4) 

where X is the unknown respiratory input and ( )WXP |  is 
the acoustic likelihood. The weight factor  α  controls the 
contribution of the occurrence probability of the segmental 
sequence. If α  is equal to 0, classification is carried out us-
ing acoustic HMMs only. In this paper, the value of α  is 
experimentally acquired to achieve the best performance. 
Equation (4) is widely used in the speech recognition field, 
where  is usually calculated from the word n-gram 
model.  

( )WP

Classification system 

The architecture of our classification system is shown in 
Figure 4. The system comprises a training process and a test 
process. Acoustic feature parameters were extracted in the 
feature extraction module. 

In the training process, acoustic HMMs for each segment are 
generated in the case of each respiratory phase. With regard 
to normal respiration, individual acoustic models for each 
type of stethoscope (condenser or piezoelectric microphone) 
were generated. Thus, we prepared two microphone-
dependent models for inspiration and expiration. With regard 

to abnormal respiration, acoustic models corresponding to 
each acoustic segment type were generated for inspira-
tion/expiration. Segment bigrams with reference to the occur-
rence sequences of the acoustic segments in abnormal respi-
ration are also estimated according to the three kinds of hand 
labeling: Labels 1, 2, and 3. 

ighest likelihood is derived as the clas-
sification result. 

EVALUATION EXPERIMENTS 

Experimental conditions 

using the breath sounds 

Figure 4. Architecture of classification procedure for distinguishing between normal and abnormal respiratory sounds

Input respiratory sound
(respiratory phase)

In the test process, the acoustic likelihood of an input respira-
tion is calculated using the trained acoustic HMMs and seg-
ment bigrams. The diagnostic state that gives the segment 
(sequence) with the h

Our discrimination test was conducted using all the 1544 
samples. We performed a leave-one-out cross validation on 
these samples. In addition, samples recorded from the same 
subject as the test sample were excluded in the training proc-
ess so that our experiments were subject-independent. The 
respiratory data were sampled at 10 kHz. Every 10 ms a vec-
tor of power and 5 mel-warped cepstral coefficients was 
computed using a 25-ms Hamming window. Acoustic models 
for normal respiration were generated 
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of respiratory models (a condenser and pie-
zoelectric microphone) for normal respiration were used 

ith three states and two Gaussian probability density 
functions (two-mixture of PDFs) were used in the modeling 

lculated the test set perplexity PP for each model to 
te the ab

that are expressed as BN in Figure 1. 

In our experiments, we presupposed that the respiratory 
phase is known. As such, if the test sample is expiratory, 
acoustic models generated with expiratory sounds are used 
for classification. On the other hand, we presupposed that the 
recording condition for the test sample is unknown. In this 
case, two kinds 

simultaneously. 

Three types of data sets, A, B, and A+B, were used for our 
experiments. If a test sample was an element of one data set, 
samples of the same data set were used for acoustic modeling. 
HMMs w

process. 

Ability of segment bigrams 

We generated a segment bigram for each type of label. First, 
we ca
evalua ility of the bigram. The perplexity is expressed 
as 
         HPP 2=  .                                                                   (5) 

The term H is the entropy of the bigram calculated using the 
 test set 

        

whole

 ( )∑
∑ = −

=

i iiM

j jN 1 1

1

where jN  is the number of segments of the j-th test respira-

tory data and M is the total number of abnormal respiratory 
test samples. The smaller value that is obtained when com-
paring the number of segments indicates the superiority of 
the stochastic segment models. Table 2 shows the test set 
perplexity for each label set and data set. The number of 
segments for each label set is also shown. This figure is also 
equal to the perplexity where the occurrence probabilities of 
all acoustic segments are equal. It is shown that all the figures 
of perplexity are

−= jN wwPH |1 ,                          (6) 

 far smaller than the number of segments in 
each label set, thus demonstrating the effectiveness of seg-
m

t 

L  Ins No. segments

ent bigrams.  

Table 2. Test set perplexity of 
normal respirato

each segmen
r d 

bigram for ab-
y perio

abel \ Data piration Expiration 
Label 1 1.78 1.80 5 
Label 2 1.85 1.92 6 
Label 3 2.17 2.48 11 

 

Experiments using deterministic connection rules 

enerated according to three kinds of manual labeling. 
The Backus–Naur Form (BNF) is adopted to express these 

unds using a small amount of data along with 
deterministic rules results in decrease in the classification 
p

T ificat ormance using conne  
g aco egments

L  Se

of acoustic segments (baseline) 

A preliminary classification test was conducted to confirm 
the performance of a conventional method (baseline) [6] 
using deterministic connection rules among segments instead 
of the proposed segment bigram. These rules expressed the 
sequences of acoustic segments in abnormal respiration and 
were g

rules. 

The classification results are listed in Table 2. In Label 1, the 
adventitious sound models and the breath sound models for 
abnormal respiration were generated. The Label 2 set com-
prises continuous sound models, discontinuous sound models, 
and breath models for the abnormal sound periods. The Label 

3 set includes six kinds of specific adventitious sounds, two 
kinds of unclassifiable models, and breath models as shown 
in Figure 3. Each classification rate is generally high, indicat-
ing the effectiveness of stochastic acoustic modeling using 
HMMs. The use of detailed labels (Label 3) decreased the 
classification rates in comparison with the performance using 
Labels 1 or 2. Thus, we believe that detailed modeling for 
adventitious so

erformance. 

able 3. Class
on

ion perf ction rules
 am ustic s  (baseline) [%]

abel \ Data Set A Set B t A+B 
Label 1 81.5 85.9 83.4 
Label 2 82.0 85.3 83.4 
Label 3 79.7 84.2 81.6 

Experiments using segment bigrams 

To evaluate the performance using segment bigrams  we 
carried out classification experiments for each data set and 
label set. Experimental results and the typical value of 

,

α  for 
which the highest performance is achieved are listed in Table 
4. A comparison of Tables 3 and 4 reveals that the perform-
ance when using the segment bigram is always superior to 

at when using the connection rules, thus demonstrating the 
effectiveness of segment bigrams. With regard to the weight 
th

α  concerning the likelihood of the segment bigram, higher 
values are effective when detailed labels (Label 3) are used in 
comparison with Label 1 or 2. This means that the segment 
bigram is more useful than the connection rules when more 
detailed labels are used as acoustic segments. In our experi-
ments, Label 2, which comprises continuous sound segments, 
discontinuous sound segments, and breath segments for the 
abnormal-sound period, achieved the highest performance 
among the three types o ure 
achieved a classification rate of 84.2% and led to a 4.8% 
reduction of error rate 

f segmentation. Our proced

( ) ( )( )%1004.831004.832.84 ×−−  in 
comparison with the classification rate of the baseline when 
Label 2 and Set A+B were used. We believe that an appro-
priate cluster of acoustic segments, such as continuous sound 
segments, is needed to achieve higher performance when the 
amount of training data is insufficient. 

Figure 5 shows the classification performance using the La-
bel 2 set and Set B ((a) in Figure %) or A+B (b) where the 
range of α  is from 0 to 10. T is figure also illustrates the 
superio

h
r of the segment bigram and shows that it is impor-

tant a proper value of 
ity 

to select α  to achieve higher perform-

sific rforman g acous nt 
big r each la  [%] 

La S  Se B 

ance. 

Table 4. Clas ation pe ce usin tic segme
ram fo bel set

bel \ Data et A Set B t A+
Label 1 82.3 86.0 83.7 

α    1.3 0.15 1.3 
Label 2 82.5 87.3 84.2 

α    0.3 8.55 8.55 
Label 3 82.5 85.9 83.9 

α    9.65 9.76 9.76 

CONCLUSIONS 

This paper proposed a classification procedure for distin-
guishing between normal and abnormal respiratory sounds; in 
this procedure, HMMs were used for acoustic spectral fea-
tures and bigram models were used for the occurrence of 
acoustic segments in each inspiratory/expiratory period. In 
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entional method that uses determinis-
tic rules to describe segment sequences instead of the seg-

tionally set to achieve the best performance. Future work will 
lly acquiring an appropriate weight value. 
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 time-frequency analysis of breath sounds,” 
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ustic sounds with applications to chest medicine,” 

5 
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2006. 

our approach, we assumed that each inspiratory/expiratory 
period consisted of a time sequence of characteristic acoustic 
segments. The classification procedure detected the segment 
sequence with the highest total likelihood using HMMs and 
segment bigrams, and it yielded the diagnostic state of the 
sequence as a classification result. Experimental results re-
vealed that for the classification, use of the segment bigram 
led to reduction in the error rate in comparison with the clas-
sification rate of a conv

ment bigram.  

In our experiments, the heuristic value, which is a weight 
factor of the segment bigram, is used; this weight is inten-

focus on automatica
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Figure 5. Classification performance where the range of the 
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