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ABSTRACT

Many spaces have curved walls or ceilings. Withrompd building technology and new fashions in asgture

(blobs) there is an increasing number of problemestd the acoustic reflections by these surfacesn& reflected
by concave surfaces will concentrate in a narra¥a.ain practical applications of room acoustics¢heurved sur-
faces will be calculated with a geometrical apphoawirror imaging, ray tracing or beam tracingcbmputer pro-
grams the structure is modeled by flat segmentss&@lgeometrical methods do not correspond toyealit

The only valid calculation method is the calculatioom a wave extrapolation method. It is showrt th¢éheoreti-

cal correct solution of the sound field by curvedfaces is possible. A fairly simple expressiontfar sound pres-
sure in the focal point is found and a more conapéid description of the reflected sound field bykrurved sur-

faces is presented. Some formulas are presentstitoate the sound pressure due to focussing &ffEaib cases

are presented.

1. INTRODUCTION

Many small or large rooms have concave surfaceth Wi-
proved building technology and fashions in architee
(blobs) problems due to these surfaces are enaeaniteore
and more. Not only in the modern architecture st & the
old architecture these problems can occur. Theiénite of
vaults is long known, see Figure 1.

Figure 1. lllustration of the focussing effect by an el-
lipse [1]

Some situations are described in literature andynaathors
point out the danger of concave surfaces. In onsgliancy
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Figure 2. Example of an impuls response in a dome
shaped hall (Tonhalle Diisseldorf before renovation)
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work we had to deal with these situations e.g.oncert halls
(I2].[3]). When sound is reflected from a concawefaces
the geometry of the surface will force the enemyancen-
trate. Figure 2 shows the impuls response (enéngg-turve
ETC) of the Tonhalle Dusseldorf , before renovatife see
that a very significant echo occurs. Depending fwa level
and the time delay the sound concentration mayecauns
echo, sound colouration or inbalance in an orchesiund.

Despite of the attention that is paid to the phegroon none
of the many books on acoustics describes the amdplibf
the sound field in the focus. In practical consuita work
often ray tracing algorithms are used to kwantifg focus-
sing. In this paper we will show the limitation géometrical
solutions and we describe a wave based method\e gee
problem. This paper will concentrate on reflectidrem a
spherically-curved surface, e.g. a hemisphere @pleere
segment. For comparison, results from literatureredliec-
tions from cylindrically-shaped surfaces will alse shown.
Part of this work is also published in [4],[5].

2. GEOMETRICAL METHODS
Thin lens method

Figure 3 shows the geometrical situation with adhdunlly
reflecting, concave surface characterised by thiguseR, a
source positiors at distances and a resulting focal poiM at
distanceu. From this geometry the thin lens formula can be
derived:

111 nR=2f M

u s fcosf

The pressure of the sound field incident at Q anréflector
can be described by:
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Figure 3. Geometry showing the concave surface with
source positiors and position of the focal poi

p(s) = p— @)

where K =wavenumber anof) =amplitude (in [N/m]) corre-

sponding to the value of the pressure amplitude it from
the source

The geometrically-reflected sound field can be dbed
using the position of the focal point as a refeeerithe pres-
sure will depend on the distancg to the focal point, pre-
sumingry, is in the illuminated area:

e—ik(s,+u+rM )
p(ry) =X — ®)

M

At the surface of the reflector the pressure ofa(@) (3) will
be equal, resulting in:

ik (stu+ry, ) . Rcosd e—ik(s+d)
=p (4)
2s-Rcosf |d -u|

.me
p(ry) = p;

i

where d =u+r,, . At d =u (the mirror source M) the

calculated sound pressure according to (4) wilinfieite. In
reality it will be finite and the pressure will dapd on the
wavelength and the size of the mirror. Outside fioisal
point the amplitude does not depend on the sizkeoiirror;
the reception point is either visible or not. Tloeisd pressure
level increasedl. compared to a flat reflector will be (see
also [6] ,[7]):

AL, = —20Iog{

1 2 ©)
(& +1) Reosd

This is for a double curved surface, with radiusofvature
R in both directions. For cylindrical structures ri@ture in
one direction) 10log in stead of 20log should Heeta The
reduction by convex structures can be calculatétjusega-
tive R.

Geometrical computer models
Computer models are used as a prediction tool factjwal

room acoustical puposes. The common prediction taate
based on geometrical acoustics. Methods used aagelm

Source Method (ISM), Ray Tracing (RT) and Beam Tracing

(BT). In this paragraph we discuss the applicabibtythese
geometrical methods for the calculation of reflees from
concave surfaces.

2

Proceedings of 20th International Congress on AbesydCA 2010

Figure 4. lllustration of the geometrical reflection by a
continuous curvature (left) and segmented curvature
(middle and righr

In the practice of room acoustic modeling curvephése)
elements are not modeled as curved elements butaleeed
by small plane surfaces, segmenting the curvedesielfsee
figure 4). Depending on the shape of the curvednsed,
they are modeled as rectangle, trapezium or tréaptanes.
This segmenting will influence the calculated puessn the
focal point. The influence of segmenting also depen the
method used.

Image Source Method

The sound pressure in the center of a hemisphéang L8M
can will be calculated and compared to the themaksound
pressure discussed in chapter 3. Assuming the glariaces
have characteristic dimensitnthe area of each element will
beb® Applying ISM, for a hemisphere the number of wirr
images will be:

N = 27R? | b?. (6)

In ISM the energy of the visible image sourcesddedl. In
that case the pressure at distané®m a (mirror) source can
be written by: p(r)2 =1 p?/r?. With the source in the cen-

ter of an hemisphere, the pressure in the centexechby the
all the mirror sources at distance2R will be:

2 _ N2 2
p(0)ns =4 NP* /(2R) 7)
In chapter 3 it will be derived that the expectedue for a

hemisphere is:p(o)fms =4 p?k?. This value can be obtained

when the right number of plane surfaces is apped,
N = 4R%k? = (47R/ A) 8)

That means that the number of surfaces requirddbwifre-
quency dependant. For real situations in room dis,gor
example frequency 500 Hz and R=10 m, N>34000. T&is i
not practically feasible. The large number is duéhe incor-
rect summation of energy of correlated sources.

If coherent sources will be used, including the gghan the
summation of pressure, the number of surfaces eaneb
duced. Assuming a point source in the center ofsgiteere:

p(r) = pe™ /r, the contribution of each image source in
the center will bep(r) = pe™*2? /2R. When adding all im-

age sources (with same phase) the total presstine icenter
will be:

|p(0) = Np/2R. )
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In chapter 3 it will be derived that the pressurehie focal
point of a hemisphere i%p(o)‘ = pk- That means that a cor-

rect prediction in the focal point is obtained ase:
N =2kR=47R/A. (10)

Again the number of surfaces required will be fregy
dependant. For the calculation example given alhdv@70
is needed, this is much less as with energy suromatnd
might even be practically possible.

The required width of the surfaces in this casélvel
b=+v2#R*/N =1 IR (11)

in this example 1,3 m. This agrees with the reqLwth of
plane segments to model a cylinder as found byTBg il-
luminated width in the center by the mirror soureék be
2b, in this case 2,6 m. In chapter 3 it is shown thatase of

a hemisphere the actual width at the focal poiim the order
of /2, so whenR>2 4, which is usually the case (except for
small rooms at low frequencies), the focal arezudated
with mirror images is too large. So by segmentimg ¢urved
surface and applying ISM it is not possible to jethoth
focal strength and width of the focal area corsectl

Ray Tracing

Ray tracing is used in many fields such as optiisnsc and
acoustics. The propagating wave is modeled withya mor-
mal to the propagating direction. The source isttamgi the
rays. Mostly, but not necessarily, with a uniforistdbution.
The sound poweP of a monopole at distancewill be:

a2
P=IB=—P __@m?="p (12)
20cld oc

Assuming the uniform distribution df rays emitted by the
source, the powd?; of each ray will be:

a2
P :ZLT% (13)
oC

The rays are detected with a receiver volume. Treggy in
that receiver volume depends on the travel timehefray
through the volumeE;=P;-4t, with 4t=l;/c and|; =path length
of rayi through the receiver volume. With the averageninte
sity (averaged over the volume of the receiverjhef sound
wave of rayi inside the receivel;= E; -c/V,whereV = vo-
lume of the receiver. This will result in:

| Rlstic_RIl 14)

' \% \Y

In case the model is segmented there will be aasprd
energy around the focal point (see also figurdmase this
spread is limited ta/2 width, the dimensions of the segments
should not be more tha. Contrary to ISM, the pressure in
the focal point will not increase when the numbérseg-
ments further increases, since the number of tashit the
focal area depends on the number of rays emitau fhe
source and the total opening angle of concave airfa

Next step is to consider an exact geometrical madehe
sense that all rays reflect in the correct specdieection,
depending on the orientation of the small surfdeenent at
impact position of the ray. This model can eitherebpara-
meterized model or a sufficiently segmented model.
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Assuming all reflected rays will pass the exactafogoint,
the path lengtt through the receiver volume will be equal to
the diameter of the receiver volume. The presstitheref-
lektion from a full sphere in the receiver volunesults from
energy summation:

N 62
przms = mz Ii = 12? (15)
i=1

This sound pressure is independent on the numbearysfout
is dependant on the volume of the receiver. A largeeiver
volume will not be compensated by more rays (&aglitbe in

a statistical sound field) since all rays passhatdenter. In
chapter 3 it will be illustrated that in fact theeegy will dis-
tribute over an area depending on the wavelengtheniive
assume the diameter of the receiver volubrel/2, the total
pressure in the receiver volume will be:

n2
Phs = 485 (16)

Which is differs from the exact solution (chaptgr Bor a
half sphere the corespondence is deviation is lafge with
ISM, the basic problem is that an energy summasarsed,
where a amplitude summation would be required. Hemst
more it is noted that in commercially available tagcing
programs the size of the receiver can not be chosen

Beam Tracing

The main difference between RT and BT is the way Hav
decrease with distance is handled. In RT the deereés
sound pressure of an expanding sound field wittdtsance
from the source is implicitly in the calculation thed since

the distance between the rays becomes larger aadtatis-

tical approach the probability of hitting a (fixstze) volume

receiver decreases. In BT the decrease with distarzadcu-

lated from:

AQ

el a7
S(r)

Pins

whereAQ is the opening angle of the beam &) is the
cross-sectional area of the beam at distance r ihensource.
When applying this method on curved surfaces tlzerbeill
converge and due to the smalfr) the geometricaly correct
increase of sound pressure will be found. In trealfgoint
however S(r)=0 which will lead to an (incorrect) infinite
sound pressure. So this method is not capablelcfilating
the sound pressure in the focal point. Outsidefdbal point
however this method can be applied and is expectagive
basically the same results as ray tracing. As With BT is
used as an energy method, also called incohenmsre phase
is not included. Contrary to RT, BT is deterministicthe
sense that at each position the pressure and pmlsasde
calculated and the distance traveled, so a coheadrnilation
is basically possible. Outside the focal point ¢cehée BT is
capable of determining the interference pattera €g.[9]).

It can be concluded that none of the methods gitisfactory
results in the focal point. Better tools are neettedpprox-
imate the sound pressure field, especially arodmedfocal
point. Outside the focal point geometrical methads suffi-
ciently accurate to predict the average sound figiterfe-
rence might be incorporated by using coherent kearing.
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3. WAVE BASED METHOD

Kirchhoff integral

Wave extrapolation uses the Huygens principle, idgesl by
Christiaan Huygens in 1678 and later improved bysiee
and Kirchhoff. According to the Huygens principleegy
point on the primary wavefront can be thought odasmit-
ter of secondary wavelets. The secondary wavetatdbhime
to produce a new wavefront in the direction of ggtion.

Figure 5. Geometry and notation used

The Kirchhoff integral states that for a poitin volumeV

with surfaceS the pressure can be calculated from the pres-
sure at the surface and a dipole radiation fronh siaface
elementdS with its axes normal to the surface (left partii a
from the normal velocity at the surfa@and a monopole
distribution: (18)

+jkd e e
T Ceosp® —+ jap ()

As for the |nC|dent pressure on the surf&a monopole is
assumed that generates a spherical sound fieldprétssure
p at distances, see (2) omitting the time dependence. The
velocity at this point os can be calculated from:

mU@——{wuw )ds

iap 11+ jks
ipwos pc

S er (19)
jks S

v(r,w) =-

this results in a sound pressuréiin

e jk(s+d)

cosg) ds (20)

+

P ¢, 1+ jks 1+ jkd
:—p'[(isj cosa dJ

Spherical surfaces

Using polar co-ordinates with the origin in the tegrof the
sphere, described bx = Rsindcosg,y = Rsindsing,
z=Rcosf, a small surface element can be described by
dS=R*sin@&lg and the integral formulation for the
pressure of a reflection from this surface becort&k)

On 21

2 H —jk(r+s)
= pR .f .f |nz9( cos¢+l+ Jkscosa)e d&dg
7T glogio S rs

while integrating over the opening angle of theesptseg-
mentd,,,. Some numerical results are shown in figure 6.

Pressure in the center of a sphere
For the specific situation of a full sphere, theirse in the

center and the receiver in the center, this fornsitaplifies
to (s=d=R, cos=cosp=1):

- jkpA 1 2Rk -
p(0) = 1+ 2R dS= 2k
© ZIRZ( ij] -[ j (

omi2Rk (22)
kR
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Figure 6. Numeric calculations of the reflected sound
field based on (21). The radi&sof the sphere segment is
5.4 m,k=18.4 kR=100). The source is in the centre point.
The differencebetween white and black is 30 dB. Left:
0=/2,, Right:6,= /5

for kR>>1: p(0) = j2kp &' *® (23)

or generalised for sphere segments with openintea@hg
p(0) = jkp(1-cosg, & 1 *® (24)

or in terms of rms pressurep? =4 p%k3(1-cosd, )

The sound pressure level (SPL) at the focal poatétive to
the SPL at 1m from the source, is:

AL =10logk?(1-cosf, )’ (25)
For a hemisphere with,= ¥%n : 4L=10logk

It is noted that the increase in sound pressurel lenly de-
pends on the opening angle and frequency and ndhen
radius of the (hemi)sphere (in cdde>>1). All energy radi-
ated in the (hemi)sphere returns to the centresgaddently

from the radius.

Reflected sound field in a full sphere

[
o

pressure [Pa]

O FRP N WA OO ON OO
— L

distance [m]
Figure 7. Reflected sound field in a full sphere. Numeric
calculations with (21k=4.6 (250 Hz2)R=5.4 r

With the source in the center of a full spheregbend pres-
sure can be calculated with the spherical Bessetifumj,:

P = PO, (kn) = pOE (26)

The reflected sound field shows a strongly intémfgistand-
ing wave pattern. Outside the focus point, the Epesof the
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interference pattern correspondonds to the invagsare law

(p*~1/7%).

Reflected sound field in the axis of a sphere seg-
ment

When using approximate solutions for (21), seetfg, pres-
sure in the axis of a sphere segment (such as shohig.6)
can be calculated. With z being the coordinate gathie axis

(see Fig.3):
j 27)

The sound field strongly depends on the ‘depttithefsphere
segmentvm (=R(1-cos 6, see Fig.3), for which there are
three situations:

\p(z)\~ sm(lkR(l cosH)R .

I.vm>, or kR(1-co9),)>2z: The area around the focal point
the pressure can be described by (27). For larig&arte the
average pressure can be estimated with a geonetrathod
(e.g.(4)), see fig.8. The two transition points @éeéined by:

.y R 28)

" R(l-cos8,) A

. i

: i
|

L)

0
3 2 1 0
z/IR
Figure 8. Reflected sound field along the axis of a sphere
segment. Shown is the solution with (27) and thags-
rical decrease. Transition points (in red) with )(28
kR(1-co9),)=19, see Fig. 6, right

P(2)/p(0)

I1.vm<i/4, or kR(1-co9),)<z/2: When the depth of the seg-
ment is less than a quarter wavelength, diffracfrom the

Figure 9. Numeric calculations of the reflected sound
field based on (21). The source is in the centrehef
sphere segmertt,= n/10, R=5,4 m. Left: k=18.4, kR(1-
c0s0,=4,8), Rightk=4,6;kR(1-co¥,,)=1,2
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segment will occur, similar to, or even almost ddoa the
low frequency diffraction from a flat disk (fig %ight). The
pressure amplitude will be inversely proportior@ithie dis-
tance from the spher&®{2 instead of the distance from the
centre of the sphe=

R -2
In this situation no focussing effects due to toraave shape
are to be expected.

1. MA<vm<), or n/2<(kR(1-cos8,)<2z: When the depth
vmis between a quarter and a full wavelength aafosbeam
will be obtained, as can bee seen in fig.9, |dfie igh pres-
sure at the focal point will spread over a certiigtance.

Reflected sound field in the focal plane of a spher e
segment

Again using approximate solutions for (21), seeddafl [5],

the main lobe of the pressure in the focal plana aphere
segment (perpendicular to the axis) can be cakdjatithx

is the distance to the focal poMtin the focal plane:

|p(x)| = Pk(1-cosd,)cod} xksing,) (30)
20

12 A

pressure p [Pa]
=

-0,5 -0,3 -0,1 0,1 0,3 0,5
Xa [m]
Figure 10. Reflected sound pressure in the focal plane of
a sphere segmertl,= n/2. Results fok=18,4 (1000 Hz),
k=9,6 (500 Hz) andk=4,8 (250 Hz). Note that at=0:
p(0)=k (with p=1). For k=18,4: thin line is calculated

with (21), solid line is approximation of main loldgth
(30)

Figure 10 shows that for high frequencies the paaksure
in the focal point is higher, for lower frequenciée spread
of the focal area is larger. The width of the faing area (-3
dB points) can be approximated by=+i/(4sind,). At the
focal (x,y) plane £=0) of a hemisphereff= n/2) the area
where focussing will occur will be a circle withdeameter of

half a wavelengthy " @1
4S|n67 16

An alternative way to obtain an estimation of tmegsure in
the focal area would be to use an energy approxmat
equally distributing the energy over this area. Hweind
power P of a sound source can be writte|n§' =27p%/ pc.

The power from a sound source in the centre, imtida a
hemisphere, will be half this valu@[ = 7i)2/pc. This sound
power will be reflected towards the focal point. &hdis-

tributing this sound power over the focussing &gaherms
pressure will be:
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2 _ pcR _ a2 2 32
prms T T 0!4p k ( )
Swv

this is close to the theoretical peak valge =1p%k® (24).

So for a hemisphere, the energy is distributed aveircular
area with a width of approximately half a waveldngt

Validation experiment

To verify the theoretical amplification in the fdgaoint an
experimental setup at small scale was made. ltistsnsf an
half ellipsoid with the two focal points at relatly small
distance. The model is CAD/CAM milled from a solidly
urethane block ( Ebaboard PW 920), a material waithigh
density and excellent low surface porosity. Theuaacy of
the shape of the ellipsoid is approx. 0.01 mm. Fhpulse
response was measured with a MLS (Maximum Length Se
qguence) signal. In time domain the separation ifatlisignal
and (single) reflected signal was made. The setup fee-
quency dependant difference between reflected arettd
sound pressure level are shown in figure 11. Thelteshow
a very good agreement with the theory.

24
22
20
18
16
14 /
12 v

10

2000 2500 3150 4000 5000 6300 8000 10000

I

=

3

3

3
amplification [dB]

frequency [Hz]

Figure 11. Left: Section of the experimental setup (half
ellipsoid), S=source, R=microphone. Right: differerze
tween SPL reflected and direct sound, red: themke{R0)
and blue: measured

4. PRACTICAL CONSIDERATIONS
Spheres, cylinders and ellipsoids

Many curved surfaces have a radius in one direcéan the
rear wall of many theatres. For cylindrical shapesre is
concentration in one direction and divergence i@ thher
direction. The SPL increase (re 1 m from the sguatehe
focal line of a cylindrical cylinder will be (se8][[10]):

AL =10log 7K (33)
4R
Contrary to the sphere, the focussing effect inndgrs is
depending on the radil® Figure 12 shows the SPL increase
30,0

20,0
—
<

10,0 1

0,0 — e

10,0 Er=—="

-20,0
125 250 500 1000 2000
frequency [Hz]

Figure 12. TheAL (SPL in focus point relative to the SPL at 1
m from the source) at the focal point or focal lfioe: upper
line: a hemisphere (25); lower lines: a half cyénavith radius
(top-down):R=4, 8, 16 and 32 m (33). The SPL of the hemi-
sphere is independent of the radius
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at the focal point for some different conditionissthows that
the focussing effect of a spherical reflector ischngtronger
than the focussing effect of a cylinder. When corimgathe
level of the reflection relative to the direct sduat the re-
ceiver position, the level decrease of the direcinsl has to
be added. The amplification at the focal point t&nquite
dramatic, especially for spherically-curved struetu

More curved shapes are possible such as ellipsoid<llip-

tic cylinders. A number of cylindrical shapes isdébed in
[10]. As for ellipsoid shapes the sound source learin one
focal point and the receiver in the other (as i ¥alidation
experiment). In those cases the amplification & ¢knter is
slightly reduced. Numerical experiments have shivat the
pressure in the focal point of an ellipsoid canapgroxi-
mated by & andc being the small and long axis of a prolate
ellipsoid):

|0 = 2k(asc)" (34)

In case the source is not in the center the fooiltpaxis and
focal plane must be constructed based on geomietuiless.
The pressure in the focal will however be lowee(Bg).

Reduction possibilities

Apart from changing the basic shape of the spaost{ynthe
best option) the strength of the reflektion in fheal point
can be reduced by reducing the specular reflectexigg.
Incorporating the reflektion factét; in (25):

AL =10logR |’ k?(1-cosd, ] (35)

with g =1- ‘RZ‘ this will result in:

AL =10log(1- a)k*(1-cosd,, )’ (36)

For a common absorption material with absorptioffament

a=90%, the reduction by the material will be 10 dB.léw

frequencies this value is difficult to obtain, faigh frequen-
cies the possible reduction may be a bit more thardB.
However 10 dB is small compared to the amplificaiiothe
focus point, especially for spherical surfaces,fapae 12.

The effect of diffusion (or ‘scattering’ in the wdrof ray

1

0,9 -

o

coo0oo0oo0oo0oo
OFRL N WbMOUOoO N O©
I I I I I

scattering coefficient

125 250 500 1k 2k 4k

frequency [Hz]

Figure 13. The scattering coefficient of three different
diffusers. Solid line: modulated array, 6 periods,
wells/period,0.17 m deep; dotted line: 6 semicygdirsd
r=0.3 m; thin line: 3 semicylinders with 0.6 m flsec-
tions [11]

tracing) might also be limited. Figure 13 shows slkatering
coéfficient of a few relatively good diffusors (fro[11]).
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The scattering coefficient is generally not morantt90%,
indicating a 10 dB reduction of reflected energypétsally
at low frequencies this value is difficult to obtai

For cylindrical shapes the required reduction isstiyosig-
nificantly less as for spherical shapes (see fig.E@r cylin-
ders absorption and/or diffusion might give suéfidi reduc-
tion. For spherical shapes however the effect tifi ladsorp-
tion and diffusion seems to be too limited to coetgly re-
move the focussing. An alternative would be to nextti the
energy with surfaces of sufficient size so littteesgy will be
reflected to the focal point. Fig. 14 shows thepsapsion of
the specular energy with tilted panels, dependmthe angle
and panel size. For a reduction of 15 up to 20 giarel is
needed of at least.2at 30°. For lower frequencies the reduc-
tion is less, but fortunately the amplificatioraiso less.

0,0 *—\

}\
-10,0 +— X
-200 +—11
-30,0 -

0,0 1,0

reduktion [dB]
KR
ul
)

2,0 3,0 4,0 5,0 6,0
nr of wavelengths

Figure 14. Reflected energy (back to the source) of a plane
surface depending on the angland the size of the panel.
Horizontal axis: ratio of panel size to wavelengWertical
axis: reduction of the reflected sound relativéhi panel at
angle of 0 degrees. Source and receiver both ifattfeeld.
Blue: ¢ =10°; Violet:¢p =20°; Redip =30°;Light blueip
=40°;Calculated with (20)

5. TWO CASES
Tonhalle Disseldorf

Before the renovation of 2005, the Tonhalle Disgéldad a
shape close to a hemisphere. The section is shovigure
15. The inner dome was made of wooden panels. ddies
of the dome is about 18 m. The total visible reftex con-
cave surface is estimated to be 1/2 of an hemispherthis
case the pressure in the focal point (re 1 m froensource)
can be calculated fromal =10logk? - 20log(1/2) - For 500

Figure 15. Section of the Tonhalle Disseldorf: red: panels
redirecting the reflections, either directly dowowards au-
dience or up in the dome.
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Hz this results in a maximum amplification of 25 @B a
distance of 4 m from the sourceigure 2 shows an impulse
response for a point symmetrically to the centie amplifi-
cation found was around 20 dB. For other positiome out

of the focal point also amplifications are founthund 10 dB
above the direct sound. The delay of the reflecisoaround
100 ms. The double beat was especially audible frerous-
sion and piano. It was known as the “knocking ghost
(Klopfgeist).

Scale model research showed that diffusors woutdcom-

pletely take away the echo. The echo was complewly
moved with an acoustically transparent layer (wiresh) at
the position of the inner dome and redirecting pmhetween
inner and outer dome, as described above (3iza 250 Hz
and placed at 30°) and as indicated in fig. 15 [3].

Ellipsoid meeting room

Fig.16 shows the cross section of an prolate elipmeeting
room in an office building. The floor cuts off pat the el-
lipsoid. The entrence is an opening at one of thdseThe
walls are plastered. The curving of the room waslanby
hand, so there are some surface irregularitiesaretlipsoid,

estimated + 1 cm.

|/

Figure 16. Dimensions of an ellipsoid meeting room,
s=source, dotted line: calculation and measuremesitions

5.86m

2,07m

With the source in one focal point, the SPL is roead along
a vertical line through the other focal point. FIg. shows a
comparison with numerical calculations, based @).(2here
is a good correspondence between measurement amgtinu
cal calculation. In the calculations the existan€¢he floor

s //;%
SN RYaY V\\ //

0 0,5 1 1,5 2 2,5

height above floor [m]
Figure 17. SPL increase (re direct sound) along a vertical
line (fig.16), =630 Hz (1/3 octave). Dot: calciddt from
(34); thin line: numerical calculation based on)(2€olid
line: measurement; blue line: measured with adukticeil-
ing panel hung in the room; red line: wall absaptadded
to the room

and opening are accounted for. This is not the &ais¢he
result of (34) (the dot in fig. 17). By applyingcailing panel
and wall absorption it is possible to reduce theugsing by
about 10 dB.
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6. CONCLUSIONS

Within reasonable accuracy, the average soundyressit-
side a focal point, from concave reflecting surfacean be
estimated with geometrical methods. However thesthou
fail at the focal point. Based on wave extrapolatioethod,
this paper has provided some mathematical fornariatfor
the sound pressure in the focal point due to réfles from
concave spherical surfaces. The approximationsgiee be
used to calculate the sound field in and around ftival
point. At the focal point the pressure dependshanwave-
length at the opening angle of the sphere segrteddes not
depend on the radius of the sphere. The width efpbak
pressure is also related to the wavelength. Fotl sizeve-
lengths the amplification is high but the area $nvahile for
lower frequencies the amplification is less, b #rea is
larger. The pressure at the focal point from a spfemuch
higher than from a cylinder.

The validity of the basic integral describing theflection
from a curved surface (20) is verified with an expent.

Generally the possible reduction of the focussiffgce by

absorbers or diffusers is insufficient to elimingte focus-
sing effect. For cylindrical shapes, which have mimver

pressure in the focal line, these measures migsufiient.

In the case diffusers are not sufficient to redieefocussing
effect sufficiently, more drastic interventions arecessary
such as changing the basic geometry or adding lafiec-

tors or redirecting panels. Two cases are presestieding

the high amplification in the focal point and wagsreduce
it.
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