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ABSTRACT 

Swept signals for acoustic measurements are widely used nowadays to obtain impulse responses of the system under 

test. The overall spectrum and the inverse filter that compresses the sweep into an impulse together with the back-

ground noise conditions prescribe the result‟s signal-noise-ratio as a function of frequency. This paper proposes a 

time-domain sweep synthesis method using composite square and monomial power function modulated sine sweeps 

that can customize the resulting SNR-frequency function. Theoretical and practical aspects as well as measurement 

results are presented. 

INTRODUCTION 

Impulse response or transfer function measurements play a 

key role in linear acoustics. Various measurement signals are 

used to obtain the measurement results, such as direct im-

pulse-like excitations, random or pseudo-random signals such 

as the MLS [1], or swept sines [2]. The latter signals are used 

to spread the energy of the impulses in time to support higher 

signal-noise ratio (SNR) in the obtained results. Sine sweeps 

can be constructed in the frequency domain (such as the TSP 

signals, [3]) or in the time-domain. The sweep signals can be 

advantageously used if their overall spectrum can be custo-

mized. This was already proposed in the frequency domain 

[4,5], but in the time domain, analytic formulas were not 

present and applied yet widely except of two shapes, the 

linear sweep (having a white overall spectrum) and the expo-

nential sweep (having a pink overall spectrum) [6]. 

In this paper we propose generating perfect-envelope sine 

sweeps in the time-domain with different sweep rates em-

ploying analytic formulae. Although this alone makes it poss-

ible to implement sweep signals with various overall spectra, 

in this paper we examine the possibility of using these signals 

expanded to square sweeps, and creating mixed composite 

square sweep signals sweeping at different frequency ranges 

at the same time. Lastly we examine measurement results 

obtained with these signals. 

SINE, SQUARE AND COMPOSITE SWEEPS 

Monomial sine sweep 

In order to define controllable sweep rate signals with perfect 

envelope, in this present approach we propose to formulate 

sweeps in the dime-domain, in the form 

 𝑠 𝑡 = 𝐴 ⋅ sin Φ 𝑡  = 𝐴 ⋅ sin   𝜔 𝑡 d𝑡  (1) 

where A is the signal amplitude, ω is the angular frequency 

and Φ 𝑡  is the momentary phase function. If we let 𝑣 be a 

general modulation function depending of 𝑡 in the first order 

such that 

 𝜔 𝑡 = 𝑎 ⋅ 𝑣 𝑏 ⋅ 𝑡 + 𝑐 + 𝑑 (2) 

where 𝑐 and 𝑑 are arbitrary constants and 𝑎 and 𝑏 are scaling 

functions prescribed by the frequency boundary conditions of 

the excitation signal, then by choosing 𝑣 = 𝑥𝑝  we obtain the 

monomial higher order power sweep: 

 𝑠(𝑡)mp = 𝐴sin(
𝑇  𝜔1−𝑑 

𝜂  𝑐𝑝   𝑝+1 
  

𝑇𝑐+𝜂  𝑡

𝑇
 
𝑞
− 𝑐𝑞 + 𝑑 𝑡) (3) 

 where 𝑝 is a free parameter and where 

 𝜂 =
 𝑐𝑝   𝜔2−𝑑  

𝜔1−𝑑

1

𝑝
− 𝑐 (4) 

 𝑞 = 𝑝 + 1 

to support shorter notation. Without further loss of generality 

let us assume that (0 < 𝜔1 < 𝜔2 < ∞) so the signal starts at 

a non-zero frequency and excites a finite band. 

The monomial sweep has considerable sweep rate customi-

zability using the parameters c, d and p. 

These parameters control different aspects of the signal, but 

in order to obtain real phase functions, 𝑐𝑝  must be real. 

Consequently, if 𝑐 < 0 then 𝑝 must be an integer. 

Furthermore 𝑐 ≠ 0 and 𝑝 ≠ 0, and 

 

 𝑑:  
𝜔1 > 𝑑 > 𝜔2: 𝑐𝑝 > 0

𝜔1 < 𝑑 < 𝜔2: 𝑐𝑝 < 0
  (5) 

If 𝑑 is chosen accordingly, then |𝑐| is redundant, only its sign 

matters together with the value of p. 

Parameter d is controlling a spectrum bending feature: by 

setting a default d=0, perfectly pink, white, exponential or 

red (Brownian) overall spectrums can be obtained, but by 

changing d to a non-zero value, bended spectrums are 

obtained. 
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Despite that (3) is in a form where 𝑝 ≠ −1 most be met, it is 

true that the monomial power sweep generates a signal with 

an overall red (Brownian) spectrum, since: 

 lim
𝑝→−1

𝑠 𝑡 mp = 𝐴sin 
 𝜔1−𝑑  𝑇
𝜔1−𝑑

𝜔2−𝑑
−1

ln  
𝑡

𝑇
 
𝜔1−𝑑

𝜔2−𝑑
− 1 + 1 + 𝑑 𝑡  (6) 

When 𝑐 > 0  and p tends to infinity the monomial sweep is 

equivalent to the generalized exponential sweep: 

 𝑠 𝑡 g.exp = 𝐴 ⋅ sin  
 𝜔1−𝑑  𝑇

ln 
𝜔2−𝑑

𝜔1−𝑑
 
 e

𝑡

𝑇
ln 

𝜔2−𝑑

𝜔1−𝑑
 
− 1 + 𝑑𝑡  (7) 

Note that c is redundant in (7). This generalized exponential 

sweep can be used to synthesize various sweep shapes (Fig. 

1). 

The special case of complex 

 𝑐𝑝 =
1

 −𝑛
    where    𝑛 ∈ ℝ+ (8) 

gives a single-frequency signal at angular frequency 𝑑. The 

region where 𝑐𝑝  is positive (i.e. either 𝑐 is positive or 𝑐 is 

negative but 𝑝 is even) can be effectively used to create 

sweeps that have different bended monotonic overall shapes 

between logarithmic-like, linear, exponential-like and more 

rapid than an exponential increase (Fig. 2). 

Another useful feature of the monomial sweep is that it 

support frequency focus – making the signal spend more time 

at a particular angular frequency – within the band 𝜔1 and 𝜔2 

can be achieved by setting 

 𝑐 < 0    and    𝑝 = 2𝑘 + 1    where    𝑘 ∈ ℤ+ (9) 

and by increasing 𝑘 the focus can be set to last longer relative 

to 𝑇 (Fig. 3).  

Figure 1. Different sweep rates of the generalized 

exponential sweep controlled by 𝑑. Curves of 𝑑 → 𝜔1 and 

𝑑 → 𝜔2 are numeric examples using double precision. 

Figure 2. Monomial power sweep shapes in the cp > 0 

region; spectrogram (left) and spectrum (right). Solid line: 

𝑝 = 1, dotted line: 𝑝 = 0.3, dashed line: 𝑝 = 0.1, dashed 

dotted line: 𝑝 = 3.33, Grey line: 𝑝 = 10. Symmetry of 

𝑑 = 𝜔1 − 𝜀 (top) and 𝑑 = 𝜔2 + 𝜀 (bottom) when 𝑐 > 0. 

 

Figure 3. Frequency focus with monomial and sigmoid 

sweeps; spectrogram (left) and spectrum (right). Monomial 

power sweep with frequency focus on 𝑑 = 0.5 ⋅ 𝜔2; dashed 

𝑝 = 1, dotted 𝑝 = 3, solid 𝑝 = 7, dotted dashed 𝑝 = 21. 

Composite square sweeps 

Sine sweeps have many advantages when used in acoustic 

measurements; still, compared to MLS signals for example, 

they have a higher crest factor, meaning lower energy for the 

same peak amplitude. The crest factors are 

 𝐶 =
x 

xrms
  

 𝐶𝑠𝑖𝑛𝑒 =
max   sin  x   

lim T→∞  
1

2𝑇
 sin 2 x  dx
𝑇

−𝑇

=  2 (10) 

 𝐶𝑠𝑞𝑢𝑎𝑟𝑒 =
max   sgn  sin  x    

lim T→∞  1

2𝑇
  sgn  sin  x   

2
dx

𝑇

−𝑇

= 1. 

Sine sweeps can be transformed gradually into square-like 

signals by exploiting the Fourier-series expansion of the 

square signal. This way, as the series have more components, 

the crest factor of the signal will gradually decrease towards 

0 dB. Since the number of components 𝑀 ∈ ℤ+ is finite, the 

result is a sparsely distorted sweep: 

 𝑠 𝑡 SDS =
4⋅𝐴

𝜋
 

1

𝑘
⋅ sin 𝑘 ⋅ Φ 𝑡  𝑀

𝑘=2𝑙+1  (11) 

where 𝑙 ∈ ℤ+, Φ 𝑡  is the phase function. One advantage of a 

square sweep is that its fundamental harmonic, assuming 

A = 1 (full scale) is „encoded‟ with a 
4

𝜋
 amplitude, which is 

almost 2.1 dBFS (higher than the full scale). It would be 

advantageous if this could be exploited somehow, however, 

the Gibbs ringing phenomenon, occurring at the discontinui-

ties, and numeric limitations prevent the synthesis of signals 

without an overshoot. One way to mitigate this issue is to use 

smoothing, based on for example the Lanczos σ-

approximation [7,8], which approximate a series according 

to: 

 𝑠 Φ L =
𝑎0

2
+  σ𝑛 ⋅  𝑎𝑘 cos 𝑘Φ + 𝑏𝑘sin(𝑘Φ) 𝑛−1

𝑘=1  (12) 

where σ𝑛 = sinc  
𝑘π

𝑛
   is the Lanczos σ-factor. This can be 

interpreted and generalized in this present „sparsely distorted 

sweep‟ case to the formulation: 

 𝑠 t SDS ,L =  sincα  
𝑘π

𝑀+1
 ⋅

1

𝑘
⋅ sin 𝑘 ⋅ Φ 𝑡  𝑀

𝑘=2l+1  (13) 

where 𝛼 can be used to control the Gibbs ringing magnitudes; 

𝛼 ≥ 1 it effectively reduces overshooting; and by default 

𝛼 = 1. Once the Lanczos-smoothing is used, the „encoded‟ 

level of the first harmonic will be a function of the number of 

components, because σ is dependent of M (Fig. 4, middle). 

This prescribes a minimum number of components when the 
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signal can be effectively used (Fig. 4); in our present example 

of an exponential sweep, this yields the criterion 𝑀 > 8. On 

the other hand, assuming 𝛼 = 1, 𝑀 > 12 must be met in 

order to produce a higher energy signal than that is possible 

with the un-smoothed Fourier series. 

This practically means that in an upwards exponential sweep 

ranging from 20 Hz to 𝑓𝑠/2 at a 48 kHz sampling frequency, 

we can use Lanczos-smoothed sparse distortion up to the 

time moment when the fundamental reaches 𝑓𝑠/2/23, so in 

this case, about 55% of the time can be artificially distorted 

in a way that it is ensured that the fundamental harmonic will 

be encoded with higher amplitude than the available full 

dynamic range. 

 

 

 

 
Figure 4. Overshoot of a 1-second, 0 dBFS targeted peak 

amplitude exponential square sweep generated by Fourier 

and Lanczos σ-approximated time series, 𝛼 = 1 (top); 

„encoded‟ magnitude of the fundamental component (mid-

dle); overall crest factor (bottom). The lowest value on the 

horizontal axis is a perfect sine sweep; increasing values 

approximate the square sweep. 

Without using the Lanczos-smoothing, a crest factor increase 

of about 1.5 dB seems to be maximally achievable, more or 

less independent of sweep frequency ranges, length and 

shape (except of extreme examples orthogonal to practice). 

But more simply, a perfect square sweep can be obtained 

numerically by taking the sign function of the mother sine 

sweep: 

 s t SQR = lim𝑘→∞ s t SDS = A ⋅ sgn sin Φ 𝑡    (14)  

Sparsely distorted sweeps and square sweeps both have simi-

lar frequency response magnitude shapes as their mother sine 

sweeps, but they use a wider (or full) available frequency 

range, feature more energy, up to 3 dB (shapes shown on Fig. 

5) and their spectrum magnitudes are not as smooth as of a 

sine sweep‟s. 

Further band-based customization of the overall spectrum of 

the square and the sparsely distorted sweeps are possible by 

mixing various types of them. In general, mixing sweeps 

would most likely increase the crest factor of the result, and 

the lower energy for the same peak may not be practical, thus 

rather than mixing sine sweeps we propose to mix square 

sweeps instead. This also results in an increased crest factor, 

but we can still achieve higher energy content than what is 

possible with pure sine sweeps. Such composite sweeps can 

be synthesized by: 

 s t C = 𝒩  𝑤𝑖 ⋅
𝑁
𝑖=1 s t SQR ,𝑖  (15) 

where the 𝒩 operator denotes amplitude normalization, and 

𝑤𝑖  is an arbitrary gain factor. 

 

 

 

 
Figure 5. Time function of the beginning part of an 1-

targeted amplitude exponential sweep, generated by a 12-

term Fourier series (top), a 12-term Lanczos σ-approximated 

series with 𝛼 = 1 (middle) and by taking the sign of the 

mother sine sweep (bottom). 

In practice, to allow frequency-response customization for 

example in octave bands, we mix two signals: the first signal 

s t SQR ,1 sweeps in the full band, while the second signal 

s t SQR ,2 sweeps in the octave band that is targeted for fur-

ther noise suppression. 

Since square sweeps have a non-smooth spectrum, when a 

composite square sweeps is formulated optimizing the overall 

spectrum into a particular frequency range, the obtainable 

spectrum is not smooth, therefore some fluctuations can be 

seen (Fig. 6). It is however easily possible to filter the wider-

band square sweep and limit it to the first harmonic only in 

the range of the optimization sweep, this way little energy is 

lost but in the range of optimization smooth frequency result 

are obtainable (Fig. 7). 

It is important to note that since the square sweep uses odd 

harmonics only, optimization in the interval of larger than  

 𝑓𝑢 ≥  3𝑓𝑙  (16) 

is advantageous, where 𝑓𝑢  is the upper and 𝑓𝑙  is the lower 

frequency limit of the desired band to optimize. 
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Inverse filters for each signals are constructed in the fre-

quency domain by means of the H1 FRF estimator: 

 𝐻1(𝑗𝜔) =
𝑆𝑆𝑌 (𝑗𝜔 )

𝑆𝑆𝑆 (𝑗𝜔)
 (17) 

where 𝑆𝑆𝑌(𝑗𝜔) denotes the cross-spectrum of the noise-free 

input signal 𝑆(𝑗𝜔) and the recorded signal 𝑌(𝑗𝜔). 

 

Figure 6. Expected SNR improvement by using a composite 

square sweep optimized for the 100-300 Hz band compared 

to a same-length exponential sine sweep. Overall crest factor 

is about 1.30 dB. Red shows smoothed blue. 

 

 

 

 
Figure 7. Spectrogram (top) of a filtered composite square 

sweep optimized for the band 100 to 300 Hz to support better 

noise suppression. Color scale is in dB. The short term 

(middle) as well as the overall crest factor is about 1.33 dB. 

MEASUREMENT EXAMPLES 

In this section a room acoustic measurement example is pre-

sented. The goal was to lower the background noise in the 

100-300 Hz band within the same measurement time. The 

measurements were made in a reverberation room using the 

same equipment and physical location (inputs and outputs of 

the system). 

The speaker that was used to excite the test signals was a 

Genelec 8050A and the receiver was an omni-directional 

microphone attached to a Rion NL-32 sound level meter. The 

analog signal is transferred to 32-bit float wave files directly 

by using an RME Fireface 800 external sound card module at 

a 48-kHz sampling rate. 

Additional independent band noise in the 100-300 Hz was 

excited in the room during the measurements in steady state. 

The noise level in the room was 87 dBSPL, and when a sine 

sweep signal was excited it was 96 dBSPL. 

 

 

Figure 8. Top: observable background noise spectrum in the 

present measurement example; the 100-300 Hz noise was 

artificially excited using an independent loudspeaker. 

Bottom: overall spectrum of a 3-segment monomial sweep 

focusing to the 100-300 band. The first segment [20..100 Hz] 

is a log-shape [𝑑, 𝑐, 𝑝] = [𝜔2 − 10,−1,3] , the second 

[100..300 Hz] is a linear [𝑑, 𝑐,𝑝] = [𝜔2 + 107, 2,3] and the 

third [300..24000 Hz] is a red sweep  [𝑑, 𝑝] = [0,−1]. Effect 

of time-windowing can be seen above 10 kHz. 

The reference signal to which the comparison is made was 

the exponential sine sweep. The signals compared were a 3-

segment monomial sine sweep (Fig. 8), a composite square 

sweep based on this signal, and a composite square sweep 

with an exponential mother sweep, all focusing to develop a 

better SNR in the 100..300 Hz range. Composite square 

sweeps contained two components where the wideband com-

ponent was 15 dB attenuated. Signals were 30-second long. 

Fig. 9 presents the obtained results. According to the expecta-

tions (Fig. 7), the noise levels using the optimized signals 

decreased and the forecasted improvement of about 10 dB 

was achievable in the targeted frequency range; and all sig-

nals delivered similar improvements there. 

At higher frequencies the composite square sweep produced 

better results than the monomial sine sweeps which was due 

to the time-windowing of the sine sweep. 

CONCLUSIONS 

This paper presented a new family of sine sweeps capable of 

generating customizable sweep shapes. By customizing the 

sweep shapes the overall frequency response can be custo-

mized while the signal amplitude does not change. Such cus-

tomization is now possible in the time-domain by using the 

proposed methods.  

Sine, sparsely distorted and square sweep customizations 

were presented implemented by the following ways: 

 

 Sweep rate customization (of the mother sine sweep) by 

means of analytic time-domain generation methods 
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 Crest factor increasing by means of frequency compo-

nent customization using Lanczos-smoothed Fourier se-

ries 

 Composite signal generation by mixing square signals 

sweeping in different bands simultaneously 

 

By using such signals results with lower noise are obtainable. 

A room acoustic measurement example was presented to 

verify the applicability of the proposed method. 
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Figure 9. Background noise level in the impulse responses 

(top) and improvement compared to the exponential sine 

sweep (bottom) when using different excitation signals of the 

proposed method in the presence of excessive band-limited 

background noise in the 100-300 Hz band. 

 


