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ABSTRACT

This work focuses on the calculation of net intensity vectors in rooms, by using two different methods: a geometrical
method, based on particle tracing, and the room-acoustic diffusion theory. The classical assumption for diffuse sound
fields is that the net flow of reverberant energy at any location in room, i.e., the reverberant intensity vector, is null. The
reverberant field in rooms with homogeneous dimensions and uniform absorption coefficients is usually considered as
diffuse. This study focuses first on the spatial structure of the intensity vector field in such rooms, showing that, although
the energy density variation is weak, an organized structure of energy flows can be observed throughout the room. In a
second part, the net intensity field in more complex rooms, such as, for example, long rooms, will be investigated in
the same way, for both diffuse and specular reflections, with the aim of providing numerical estimations of the sound
intensity field and of the room-acoustic diffusion coefficient.

INTRODUCTION

Over the last years a model for the prediction of the sound field
inside room, based on a diffusion process, has been developed
[1, 2]. Applying this method, both the stationary sound field and
the temporal sound decay can be computed within single en-
closures (with different geometrical characteristics) or coupled
rooms [3, 4]: the obtained results are in good agreement with
both experimental data and ray-tracing simulations. Moreover,
although the diffusion model has been developed for rooms
with diffuse reflecting boundaries, few successful attempts to
apply the method to rooms with specular boundaries have been
made [5] by comparing the results with ray-tracing simulations.
At the basis of the model lays the assumption that the energy
flow inside the room is proportional to the sound energy-density
gradient: the proportionality constant is the diffusion coefficient,
obtained as a function of the geometrical characteristics of the
room.

The aim of this work is to investigate this basic equation of the
diffusion theory (in the stationary state), comparing the model
with a particle-tracing method. The two simulation tools derive
from similar assumptions (e.g., modelization of the sound field
through a cloud of sound particles) but the particle-tracing algo-
rithm allows to calculate the sound intensity within the room,
regardless of the energy density, and to simulate enclosures
with mixed diffuse and specular reflections.

In the following sections, the basic equations of the diffusion
theory for diffusely reflective rooms are summarized; then,
the particle-tracing method and its implementation inside a
numerical tool are detailed. Following this, the sound field in
a proportionate room (where the sound field is supposed to be
diffuse) is investigated, regarding both energy density and sound
intensity. In the last section, a disproportionate (long) room is
analyzed, with diffuse and specular reflecting boundaries: then
a numerical estimation of the diffusion coefficient for both
configurations is also provided.

DIFFUSION MODEL

The diffusion model [1, 2] is based on the analogy between the
diffusion of gas particles through spherical scattering objects
(as originally studied in [6]) and the sound propagation inside
an enclosed space with diffusively reflective walls, and allows
to describe the sound energy density distribution inside rooms.

Following this analogy and assuming that in diffusion phenom-
ena the rate of change of the involved quantities varies slowly as
a function of time, the local energy-density flow I(r, t) can be
approximated as the gradient of the reverberant energy density
w(r, t), as:

I(r, t) =−Dth∇w(r, t), (1)

where the variables r and t denote respectively the position
and the time. This energy flow can be interpreted as the sound
intensity.

Starting from Equation (1) the sound energy density can be
obtained as the solution of the following diffusion equation:

∂w(r, t)
∂ t

−Dth∇
2w(r) = F(r, t), (2)

where F(r, t) is a source-related term. Dth is the theoretical
diffusion coefficient that accounts for the geometrical charac-
teristics of the room; its analytical expression is taken directly
from the theory of diffusion for particles in a scattering medium:

Dth =
λc
3

=
4V
S

c
3
, (3)

where λ = 4V/S is the mean free path of the room, c is the
speed of sound, S and V are respectively the surface and the
volume of the room.

In the context of this work only stationary sound sources are
considered, and the stationary form of the diffusion equation
is then solved (i.e., Equation (1) without the time-dependency
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term). It has been pointed out [2] that the solution of the diffu-
sion equation is not valid in the near vicinity of the source, as
diffusion is not yet established in this area. To overcome this
problem, the Green function of the stationary diffusion equation
can be investigated:

G(r) =
W exp(−

√
σ/Dthr)

4πDthr
, (4)

where σ accounts for absorption at room boundaries and r is
the source-receiver distance.

Close to the source, a 1/r singularity dominates the solution
of the diffusion equation in terms of energy density while, the-
oretically, in this region, the direct field should be dominant
close to the source, with a 1/r2 decrease. As a consequence, for
the case of rooms with proportionate dimensions, the following
‘corrected’ reverberant energy density is calculated :

wc(r) = w(r)− W
4πDthr

, (5)

in order to remove the non-physical 1/r singularity close to the
source.

The net stationary acoustic intensity vector due to the reverber-
ant field can then be estimated by using Equation (1) with wc(r)
instead of w(r). This operation has been shown to be necessary
in order to perform estimations of the reverberant intensity vec-
tor that are coherent with the particle-tracing simulations, in the
case of proportionate rooms.

THE PARTICLE-TRACING SOFTWARE: SPPS

A numerical model for simulating the sound field within enclo-
sures has been proposed in [7]. The developed algorithm, that is
the kernel of the SPPS code, stems from the typical assumptions
of geometrical acoustics and is based on the concept of sound
particles originally suggested by Stephenson [8, 9].

The particle-tracing method models the sound field of a room
thorough a multitude of elementary sound particles, propagating
along straight lines at the speed of sound, without any mutual
interaction and carrying an infinitesimal amount of energy. The
sound energy density in the room can therefore be assimilated to
the density of particles at each position,weighted by the energy
of each particle. Since the model derives from geometrical
acoustics, it can not deal with the undulating nature of the sound
waves, thus the sound particle approach is applicable only in
the high frequency range, where some physical characteristics
of sound waves can be neglected. In this range, the notion of
frequency is introduced via acoustic properties of the room
surfaces.

The simulation principle of SPPS code is based on the tracking
of sound particles, emitted from a source with sound power
W , through the enclosure. Each particle, that carries an initial
energy einit =W/N (where N is the number of particles emitted
from the source), propagates into the room until the collision
with a wall or an obstacle, from which the particle energy can
be absorbed or reflected (as a function of the absorption and
scattering coefficients of the wall).

For all the simulations shown in this paper, an energetic ap-
proach has been employed, where at each collision the particle
energy is weighted according to the surface absorption coeffi-
cient, while diffusion and reflection phenomena are modeled
by successive drawing of random numbers, with a simulation
procedure that can be assimilated to a Monte Carlo method.

Since SPPS is a numerical tool, in order to describe the sound
propagation inside the room spatial and temporal discretizations

are required. Temporal discretization is carried out calculating
the position of each particle within the room every multiple
of a constant time step ∆t. Spatial discretization is performed
both discretizing the propagation domain into a finite number
of tetrahedral elements and working with punctual receiver of
finite dimensions (as it is necessary to calculate the number of
particles crossing the receiver position, a finite spherical volume
Vrec for the receiver has to be defined).

For each frequency band, the energy Erec(n) that arrives at the
receiver at time step n is equal to the sum of the amount of
energy carried by each particle that crosses the receiver volume
during the time step:

Erec(n) =
N0

∑
i

W
N

εi∆ti, (6)

where N0 is the number of particles that pass through the re-
ceiver volume and ∆ti is the amount of time that each particle
spends within the receiver volume; this quantity can be also
expressed as a function of the distance li = c∆ti covered by the
particle within the receiver volume.

The energy density (in J/m3) inside the receiver is therefore
obtained as:

wrec(n) =
Erec(n)

Vrec
=

W
N

1
Vrec

N0

∑
i

εi
li
c
. (7)

The particle tracing method allows also to calculate the net
sound intensity vector at each receiver, defined as the sum of
the amount of energy density carried by the particles that travel
with velocity vi (with norm c) through the receiver volume:

Irec(n) =
W
N

1
Vrec

N0

∑
i

εili
vi

c
. (8)

The vectors Irec(n) can then be summed for all time steps,
leading to the stationary net intensity vector.

NUMERICAL RESULTS FOR ROOMS WITH HO-
MOGENEOUS DIMENSIONS

In this section numerical results are presented for rooms with
proportionate dimensions, uniform absorption and having dif-
fusely reflecting boundaries. Accordingly to the statistical the-
ory, in this type of enclosures the reverberant sound field is
expected to be diffuse, i.e., characterized by the presence of
plane waves with random phase and uniform amplitude that
arrive at each point of the room with equal probability from
all directions. Therefore, according to this theory, inside the
enclosure there should be no net flow of reverberant energy
vector and the total net sound intensity at any internal point
should be equal only to the direct intensity vector (which norm
is W/4πr2) [10].

A cubic room with dimensions 10× 10× 10 m3 (Figure 1)
has been investigated, with an omni-directional sound source
located in its center, radiating a constant sound power level
LW = 100 dB; the absorption coefficient of all the surfaces is
α = 0.1, while the scattering coefficient is s = 1 (diffuse reflect-
ing boundaries). According to statistical theory the reverberant
radius of the room is rc = 1.15 m. Line 1 and Line 2 in Figure 1
are the lines along which sound pressure and intensity levels
are calculated.

Particle-tracing simulations have been carried out with N = 5 ·
106 particles (as particles reflection is depicted through random
drawing, the best results can be obtained when the number of
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drawing is high, thus when N is high), a time step ∆t = 0.002 s
and a total simulation time T = 3 s.

The numerical simulations for the diffusion model have been
performed using a software based on the finite element method
(FEM), where a cubic domain and a spherical subdomain of
radius rs = 0.1 m (centered in the source position) have been de-
fined and meshed with 36503 quadratic Lagrange-type elements.
As pointed out in [2], in order to solve the diffusion equation,
the size of the meshing elements is no longer related to the
minimum wavelength involved in the analysis but depends only
on the mean free path of the room (elements maximum size
should be much smaller than one mean free path).

The energy density gradient has been estimated for both simu-
lation tools applying central finite differences, with a 4th order
accuracy.

All the acoustic quantities have been evaluated over a quarter
of the horizontal plane that contains the source (grey zone in
Figure 1), for a regular grid of receiver points (grid step: 0.5
m).

Figure 1: Upper view of the 10×10×10 m3 cubic-room case
study with the source position S and the two dashed lines along
which sound pressure and intensity levels are evaluated.

Energy density and sound intensity

From the numerical solution for w(r) the sound pressure level
(SPL) at each position can be estimated as:

SPL(r) = 10 log

(
w(r)ρc2

p2
re f

)
, (9)

where pre f = 2 ·10−5 Pa and ρ = 1.204 kg/m3 (air density).

In order to compare the results obtained with the two simulation
tools, only the reverberant part of the energy density is taken
into account, evaluated as:

• the local total acoustic energy density minus wdir(r) =
W/4πcr2 for particle-tracing simulations,

• the corrected energy density wc(r) for diffusion model
calculations.

In Figure 2 the predicted reverberant SPL is compared with that
given by Sabine’s statistical theory showing that all the mod-
els lead to similar results (with relative differences lower than
0.2 dB). The SPL calculated from the solution of the diffusion
equation, w(r), is also plotted for comparison: it demonstrates
the need for removing the 1/r singularity and working with the
corrected energy density, wc(r) (Equation (5)). It is also worth
noticing that while the statistical theory predicts a constant rever-
berant field, both the simulation models show a slight decrease
of the SPL value in the positions closest to the boundaries, that
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Figure 2: Sound pressure level (SPL) of the reverberant field
inside a 10×10×10 m3 cubic room with α = 0.1 and diffuse
reflecting boundaries. The results are plotted along Line 2:
particle-tracing simulation (×), Sabine’s statistical theory (solid
line); (- -) and (•) indicate respectively the SPL calculated with
the diffusion model from w(r) and wc(r).

should mean, a non-null net flow of reverberant energy within
the room (as grad(w) is not null).

The total sound intensity level (SIL) is calculated by using :

SIL(r) = 10 log
(

I(r)
Ire f

)
, (10)

where I(r) is the norm of the calculated intensity vector and
Ire f = 10−12 W/m2.

The predicted total sound intensity level along Line 1 and Line 2
is plotted in Figure 3 together with the SIL decay of the direct
field. According to statistical theory, the estimated SIL should
be equal to the SIL of the direct field. However, Figure 3 in-
dicates that some differences arise. Both numerical methods
show that the total SIL tends to be higher (for Line 2) or lower
(Line 1) than the SIL of the direct field in the vicinity of the
room boundaries. The difference reaches about 2 dB in the
considered case. This may be due to the fact that close to the
walls, the norm of the net intensity vector of the reverberant
field reaches significant amounts compared to the norm of the
direct intensity vector. This observation can be better explained
by considering the reverberant intensity vector field.

Intensity vector patterns

In Figure 4 the spatial distribution on the horizontal plane of
reverberant intensity vectors is displayed, as obtained from both
particle-tracing and diffuse theory simulations: vectors define a
well oriented path from the sound source toward the edges of the
room, from which they are attracted. Both models provide the
same oriented pattern, in spite of some discrepancies between
the vectors magnitude.

In the corner of the room, close to the edge, the reverberant
intensity vectors are oriented in the same direction than the
direct field, so that the total SIL is higher than the direct field
SIL (about 2 dB more), as shown in Figure 3b. Conversely,
close to the wall the reverberant intensity vectors are oriented
in the opposite direction to the direct field intensity vector; as a
consequence, the total SIL in this area is lower than the direct
field SIL (Figure 3a).
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Figure 3: Total sound intensity level (SIL) as a function of
the source-receiver (S-R) distance, including both direct and
reverberant field, inside a 10× 10× 10 m3 cubic room with
α = 0.1. Results plotted along Line 1 (a) and Line 2 (b): particle-
tracing simulation (- -), diffusion theory (•), theoretical value
of the direct field (solid line)
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Figure 4: Reverberant intensity vector distribution over the
horizontal plane in a cubic room 10×10×10 m3 with α = 0.1
and diffuse reflecting boundaries. Particle-tracing simulation
(red arrows) and diffusion theory (blue arrows).

Finally, a numerical simulation of a sphere with radius R = 5 m
has been carried out employing the diffusion theory model, in
the aim of demonstrating the effect of edges on the reverberant
intensity vectors distribution. The sound source is located in the
center of the sphere and the absorption coefficient is α = 0.1;
within the FEM solver the domain has been meshed with 62614
quadratic Lagrange-type elements. The acoustic quantities have
been evaluated over the horizontal plane that contains the sound
source: because of symmetry, the results would be the same
on each plane of the domain containing the sphere center. In
Figure 5 the total SIL is represented over a line from the source
to the boundary, showing that in such a room the reverberant
energy density flow is null all over the enclosure: the total sound
intensity at any internal point is equal to its direct component.
This confirms that the edges of the room tend to ‘attract’ the
reverberant intensity vectors.
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Figure 5: Total sound intensity level (SIL), including both direct
and reverberant field, as a function of the source distance inside
a sphere with radius R = 5 m and α = 0.1: diffusion theory (•),
theoretical value of the direct field (solid line)

NUMERICAL RESULTS FOR LONG ROOMS

In this section some results for the energy flow inside a dispro-
portionate room are presented: the examined enclosure is a long
room with dimensions 4×4×40 m3 and a uniform absorption
coefficient α = 0.1. The omni-directional sound source is lo-
cated two meters from one of the extremities of the room, in the
center of the cross-section and emits a constant sound power
level LW = 100 dB.

Particle-tracing simulations have been carried out with N =
5 ·106 particles, a time step ∆t = 0.002 s and a total time T = 2 s;
simulations with diffuse (s = 1) or specular (s = 0) reflecting
boundaries have been performed. For the numerical solution of
the diffusion equation with a FEM-based software the domain
has been meshed with 6114 quadratic Lagrange-type elements.

The energy density gradient has been estimated for both simu-
lation tools applying central finite differences, with a 4th order
accuracy.

Given the geometrical characteristics of the room it is reason-
able to assume that the energy density varies mainly along the
length of the room, i.e., it is quite constant over the cross-section.
So, all the acoustic quantities have been investigated along the
longest dimension of the room, from the source to the end wall.
Moreover, inside a long room, except for positions very close
to the sound source where the sound field is dominant, the total
sound field is everywhere coincident with its reverberant part.
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Energy density and sound intensity

As pointed out for example in [11], because of the dissimilar
dimensions, in a long room the sound field is not diffuse but
the SPL decreases continuously along the length (as shown in
Figure 6).

Close to the end wall of the room (about 10 m from the surface),
the decay experiments a change and the SPL decreases with
a lower slope. The comparison between particle-tracing (with
diffuse boundaries) and diffusion results shows how the latter
method can not properly model this wall effect, resulting in an
increasing difference between the two SPL curves that, near the
end wall, becomes almost equal to 4 dB.

Concerning the effects of the surface reflection law on the sound
energy density, it appears from the SPL curves, that the total
amount of energy within the long room with diffuse reflecting
boundaries is lower than with geometrical reflecting boundaries.
This is the consequence of the bigger probability that, under
diffuse reflections, the sound particles have to hit a wall and
then lose consequently a part of their energy [11].
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Figure 6: Sound pressure level (SPL) of the sound field inside
a 4×4×40 m3 long room with α = 0.1, as a function of the
source-receiver distance (S-R distance): diffusion theory (thin
solid line), particle-tracing simulations for the room with diffuse
(•) and specular (- -) boundaries, direct field (thick solid line).

In Figure 7 the sound intensity level is represented, showing
again a discrepancy between results predicted by the two simu-
lation tools for the long room with diffuse reflecting boundaries.
Moreover, it can be observed that the sound intensity is always
higher in long room with specular reflecting boundaries, even
if, according to Equation (1), the higher slope of the SPL decay
curve should provide a higher SIL (as this involves a higher
value of the norm of grad(w)). This apparent contradiction
can be explained by investigating the local diffusion coefficient
inside the room.

Numerical estimation of the diffusion coefficient in
long rooms

The theoretical diffusion coefficient of an enclosure can be
calculated by using Equation (3), for a room with perfectly
diffuse boundaries. It is supposed to be constant over the whole
room.

Starting from the output data of the particle-tracing model, a
numerical local estimation Dest(r) of the diffusion coefficient
within the long room can be carried out, for diffuse or specular
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Figure 7: Sound intensity level (SIL) of the sound field inside a
4×4×40 m3 long room with α = 0.1: diffusion theory (thin
solid line), particle-tracing simulations for the room with diffuse
(•) and specular (- -) boundaries, direct field (thick solid line).

reflections. As diffusion concerns only the reverberant part of
the energy density, Dest(r) has been computed as:

Dest(r) =
‖Irev(r)‖
‖∇wrev(r)‖

, (11)

where Irev and wrev are the simulated intensity and energy den-
sity after subtracting the contribution of the direct sound field.

The ratio between the estimated and the theoretical diffusion
coefficient value is represented in Figure 8 for the two types
of reflection laws: a clear increasing trend of the curves can be
observed, that probably explains the erroneous prediction of the
energy density with the diffusion model (based on the constant
value of Dth). The slope of the curve for the room with specular
reflecting boundaries is almost 10 times higher than with diffuse
reflecting boundaries. The high diffusion coefficient for long
rooms with specular reflecting boundaries is in agreement with
the results of reference [5]; this can explain the higher SIL for
these rooms, following Equation (1). In both cases, in the region
near the end wall, the curve slope increases rapidly, which may
probably be a consequence of reflection effects on the end wall.

CONCLUSIONS

In this paper the validity of the room-acoustic diffusion theory
has been investigated, by comparison with a particle-tracing
method. Both proportionate and disproportionate (long) rooms
have been simulated, in order to study the spatial distribution
of energy density and sound intensity inside enclosures.

Within a proportionate room with uniform absorption, accord-
ing to statistical theory, a diffuse reverberant field should be
expected, with a constant energy density in each internal point
of the room and, as a consequence, a null reverberant sound
intensity vector. Instead, with both simulation tools, a slight
variation of the reverberant energy density inside the room has
been found, together with an organized path of the reverberant
intensity vectors that, in the region close to the boundaries leads
to local deviations of the total SIL compared to the direct one.
This effect is a consequence of the presence of room edges, thus
can not be observed inside a spherical room. Inside proportion-
ate rooms, only a part of the solution provided by the diffusion
model (the part that not experiments a 1/r singularity near the
source) should be taken into account in order to obtain estima-
tion of the stationary reverberant intensity vectors coherent with
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Figure 8: Ratio beteween the estimated and the theoretical diffu-
sion coefficient inside a 4×4×40 m3 long room with α = 0.1
and diffuse (a) or specular reflecting boundaries (b).

.

that obtained with particle-tracing simulations.

Within the long room, simulations have been carried out for
both specular and diffuse reflecting boundaries, showing how
sound energy density and intensity are strongly affected by
the reflection law of the walls: inside long room with specular
boundaries the two acoustical quantities are always higher than
inside a long room with diffuse boundaries. An estimation of
the real value of the diffusion coefficient has been then pro-
vided, starting from particle-tracing results: in long rooms this
coefficient is no longer a constant (as theorized by the diffusion
model) but increases with the distance from the source, with a
slope which is a function of the enclosure scattering coefficient.
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