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ABSTRACT 

A simplified auditory model has been used for calculating an enhanced summary auto-correlation or ESACF, which 

can be used as a tool for musical pitch estimation from audio signal. The model itself is not only computationally ef-

ficient but its ESACF also shows a good result for single pitch estimation. However, using this ESACF for multiple 

pitch estimation seems to be very difficult to analyse because musical instruments usually have timbre variations 

even for the same kinds of musical instruments. By modifying this model, we can generate input features to use with 

neural network for assisting the process of multiple pitch estimation. Thus, each output of the neural network is 

mapped to each musical pitch and used to indicate each existing pitch probability. In our experiments, we generated 

data sets from recording of real musical instruments and used these data sets to train neural network and evaluate its 

performance. We compare performances of neural network between using of these proposed features and spectral fea-

tures generated from audio spectrum. From the results, we found that the performances from these proposed features 

can be comparable with the features generated from audio spectrum and some experiments illustrated that these fea-

tures yield better performances for musical instrument signals with slightly changes in their timbres. 

INTRODUCTION 

Musical pitch estimation is a task to find a correct pitch asso-

ciated with audio signal at particular time frame. This task 

becomes complex when audio signal contains two or more 

pitch at the same time frame. We call this task specifically 

multiple pitch estimation. We found from the past work [1] 

that it is possible to use an artificial neural network for multi-

ple pitch estimation and that work reports a good estimation 

results for synthesis signals. For detail of that work, the esti-

mation system uses features from audio spectrogram or spec-

tral features. Therefore, both time and frequency data are 

used for pitch estimation and make the system possible to 

detect musical note onset. However, frequency data may be 

sufficient if our task scopes only on multiple pitch estimation. 

Thus, in our experiments, we used only frequency data from 

audio spectrum. 

Recently, a simplified auditory model [2] has been proposed 

for pitch estimation and found to be very useful for single-

pitch estimation. In our work, we have an idea that integra-

tion between the simplified auditory model and neural net-

work could improve multiple pitch estimation system. Thus, 

to prove our idea, we scope on performance comparisons 

between using features from audio spectrum and the simpli-

fied auditory model. Another aspect of our work is to find 

performances of our multiple pitch estimation system when 

performs estimation on real musical instrument signals. We 

also include more realistic situation when musical instrument 

signals have some variations. However, our investigation 

scopes on multiple pitch signals form single musical instru-

ment only. The instruments included in our experiments are 

clarinet, oboe, horn, flute and trumpet. 

ESTIMATION SYSTEM 

In general, if we need to find musical pitch from audio signal, 

we should be able to define a mathematic function that maps 

between audio signal and its corresponding pitch as showed 

in Figure 1. Therefore, the audio signal is input variable and 

the pitch is output variable. For example, if we have single 

pitch signal, we can use auto-correlation as a mapping func-

tion. However, when relationship between input and output 

variables is very complex, such as multiple pitch signals, the 

way to define the correct mapping function is not straight-

forward.  

 

Figure 1. General idea for pitch estimation. 

Fortunately, this problem can be solved using some kinds of 

an artificial neural network. A feed forward neural network 

has been proved to be universal function approximator [3] 

that can map between inputs and outputs by learning from 

pairs of input and output instances. The input instances are 

groups of attributes or what we call features (in this paper) 

whereas the output instances are groups of labels.  
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PROPOSE SYSTEM 

INPUT UNIT 

In our system, input unit is an interface between audio signals 

and input of neural network. In this unit, time domain audio 

signal is divided into a frame of 2048 samples and trans-

formed into features for neural network by using three feature 

extraction methods: audio spectrum, equal temperament scale 

and simplified auditory model.  

NEURAL NETWORK 

There are many choices for types of the neural network. The 

past work [1] suggested using a time delay neural network. 

However, for our work, we consider a simple system since 

our goal is to investigate about features. Thus, we use a feed 

forward neural network as a mapping function between input 

features and output pitch labels. Each output pitch label is 

used to indicate each existing pitch probability. For conven-

ience, we use 12-tet scale to reduce number of possible pitch 

frequencies. Thus, to cover all common musical pitch, the 

neural network has 88 outputs corresponded to 88 musical 

pitch frequencies. Each output shows each existing pitch 

probability.  

 

 

 

 

 

 

 

Figure 2. Proposed system. 

Finally, the neural network contains three layers: input layer, 

hidden layer, and output layer. The specifications of the neu-

ral network are in table 1. 

Table 1. Neural network specifications 

Parameters Values 

Number of layers 3 [input, hidden, output] 

Number of inputs Depended on features 

Number of hidden neuron 88 

Number of outputs 88 

Activation function Hyperbolic tangent-sigmoid 

Range of input values [-1,1] 

Range of output values [-1,1] 

 

OUTPUT UNIT 

Neural networks with sigmoid activation function usually 

produce ambiguous outputs when input instances are associ-

ated with two or more possible cases. This is common be-

cause this activation function gives a probability rather than a 

hard decision. We prevent this situation by using the thresh-

old function to select and assign final values to neural net-

work outputs. In our system, the simple threshold function 

with threshold level=0.2 is used for each output. 

FEATURES 

Audio spectrum 

Spectral features are features generated using the concept of 

audio spectrum. We know that musical pitch and frequency 

components have relationship in someway. Thus, we use the 

neural network as an engine to map audio spectrum to musi-

cal pitch. In our work, we limit one frame of audio signal to 

2048 samples. Therefore, to generate spectral features, we 

take FFT on these 2048 samples and keep only FFT magni-

tudes. Since FFT magnitudes are symmetrical, we keep only 

the first 1024 values as spectral features. 

Equal temperament scale 

In western music, it is common to define musical pitch as 

frequency on 12 tone equal temperament scale or 12-tet. We 

know that frequency spaces on this scale are non-linear and 

exponentially distributed. Therefore, we can reduce number 

of spectral features by scaling linear frequency spaces of FFT 

using 12-tet scale. By this way, only 88 features are used 

since 88 pitch frequencies cover frequency ranges of com-

mon musical instruments. Equation (1) shows relationship 

between pitch in term of note number and frequency. 
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Where f = frequency in Hz and n = note number. 

However, practically, we found that frequency resolutions of 

FFT with 2048 points are too low for frequency lower than 

387 Hz. Thus, we directly use FFT frequency spaces for the 

first 19 frequency bins whereas the rest of frequency bins are 

scaled to 12-tet scale. By this way, we have only 61 features 

as showed in Figure 3. 

 

 

 

 

 

Figure 3. Features from equal temperament scale. 

Simplified auditory model 

In the recent works [4-5], we found that human auditory sys-

tem has a process that can be modelled as non-linear multi-

channel filter bank. The term “non-linear” means that centre 

frequencies are non-linearly distributed and signal levels of 

all filter channels are compressed.  To estimate musical pitch 

from this model, we need to calculate auto-correlation of 

signal from each filter channel and then all auto-correlations 

from all filter channels are summarised to final decision. 

The problem with this model is that we need to process many 

channels of filter bank. This leads to computational expen-

sive. Fortunately, research work [2] shows that we can use 

filter bank with only two channels to find the pitch. The two 

channels are low and high frequency channels. This kind of 

filter bank is used to form simplified auditory model. How-

ever, this model has slightly different from full auditory 

model in that only signal from high frequency channel is non-

linearly processed. To make the model simple, non-linear 

operation is replace by half wave rectifier.  
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In the original work [2], the outputs of both low and high 

frequency channels are combined for calculating ESACF and 

used for pitch estimation. In the same way as auto-correlation 

function, position of peak from ESACF shows frequency 

period of considering signal. Thus, we can estimate the pitch 

from this peak.  

However, we found difficulty to use ESACF for multiple 

pitch estimation because of two reasons. First, ESACF calcu-

lation is based on time-domain resolution that restricted to 

sampling frequency. Therefore, two peaks cannot be sepa-

rated well at high frequencies. Second, when signal has two 
or more musical pitch ESACF usually generates many unre-

lated peaks that are hard to be interpreted. 

For those reasons, in our work, we do not calculate ESACF 

and use data from frequency domain instead. To generate 

features from simplified auditory filter bank, we take FFT on 

each output of filter bank. We keep only FFT magnitudes 

then scale the frequency spaces using 12-tet scale to reduce 

number of features. Thus, by this way, we have 122 features. 

The process to generate these features is showed in Figure 4. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Features from simplified auditory model 

The filters in the model are implanted using 4th order gamma 

tone filters. Cut-off frequencies are illustrated in table 2. 

Table 2. Cut-off frequencies in our model. 

Cut-off frequencies Values 

High frequency channel [1 KHz,10 KHz] 

Low frequency channel [15 Hz,1 KHz] 

 

Haft-wave rectifier can be approximately calculated using 

equation (2). 

2

XX
HWR

+
=

                                                         (2) 

Where HWR=signal from half waver rectifier and X=input 

signal to half wave rectifier. 

Magnitude scales 

Magnitude scales have an important effect on the estimation 

performances. Our auditory system is able to adapt to wide 

dynamic levels of various audio sources. We approximate 

this level adaptability using logarithm scale. In our experi-

ments, we need to know how well this approximation can 

improve our estimation system. Thus, for comparison, we 

generated two sub types of features using linear-magnitude 

and log-magnitude scales during evaluation phase. 

TRAINING METHOD 

Musical note samples 

Musical note samples are time domain audio signals of each 

musical note. In our experiments, these samples were pre-

pared using real musical instrument recordings from RWC 

database [6]. We define starting position of each musical note 

by using position where absolute magnitude of each musical 

note signal reaches 60% of its highest magnitude. By this 

way, each sample contains only or at least almost stable (sus-

tain) part of each musical note signal. 

Training sets 

During training phase, we generated five separated training 

sets for five instruments: Clarinet, Oboe, Horn, Flute, and 

Trumpet. Each of these training sets contained 500 audio 

mixtures of one, two, three and four musical notes. Thus, 

total mixtures per training set were 2000. We generated each 

mixture by randomly selecting from prepared musical note 

samples as mentioned above. After that, we mixed these se-

lected musical samples at 1:1 ratio. 

Cross validation 

To evaluate the performance of neural network, we using k-

fold cross validation to partition each of training sets into two 

sub sets: actual training and validation sets. In our experi-

ments, we chose k=3 to prevent long training time. Although 

k=10 is common in many literature, we found that k=3 could 

be better to see generalization of our system than k=10. This 

is because k=3 produces less number of instances for training 

(67%) and more number of instances for validation (33%).  

During training phase, we used scale conjugate gradient algo-

rithm to train the neural network since this algorithm is usu-

ally suitable for complex problems. However, this algorithm 

is sensitive to initial random weights. Thus, to prevent this 

problem, in our experiments, we trained each neural network 

for three times and chose the neural network that produced 

the best performance for each fold. 

EVALUATIONS 

Performance calculations 

To evaluate performance of features, we used three common 

calculations: precision, sensitivity (recall), and F1-measure. 

The following equations show these calculations.  

FpTp

Tp
prec

+
=                                                          (3) 

FnTp

Tp
sens

+
=                                                          (4) 

sensprec

sensprec
measureF

+

×
×=− 21                        (5) 

Where Tp = number of true positive, Fp = number of false 

positive, and Fn = number of False negative. 

We can see that F1-measure represents both precision and 

sensitivity. Therefore, to save paper’s space, we only show 
results from F1-measure. All results were averaged from 3 

neural networks since we trained them using 3-fold cross 

validation.  
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Test sets 

We also generated test sets using real recordings from RWC 

database [6]. All samples in the test sets were completely 

unseen by the neural network because we generated the train-

ing and test sets separately.  

In the same way as training sets, we generated the test sets 

separately for five instrument signals. Each test set has 2000 

samples from 500 of one, two, three and four note mixtures. 

However, to make our results more realistic, we generated 

the test sets by using different samples from the training sets. 

The ways to prepare these samples were depended on types 

of test sets. In our experiments, we had two types of the test 

sets: the test sets generated from samples with varying the 

starting position and samples with different instrument manu-

facturers. Thus, we have 10 test sets for five instrument sig-

nals. We call these two types of the test sets: situation I and 

situation II. Both two situations are explained as follow. 

Situation I: varying the starting position 

In real situation, amplitudes and phases of audio signals be-

fore mixing can be arbitrary. A good multiple pitch estima-

tion system should be possible to produce good estimation 

results even when this situation occurs. 

To evaluate our system using this situation, we prepared mu-

sical note samples by finding the starting position of each 

note signal in the same way as we did for the training sets. 

However, we randomly vary the position away from the start-

ing position (not more than 185 msec). All samples in these 
test sets were not normalized after varying the starting posi-

tion. Thus, samples in these test sets were not mixed at 1:1 

ratio but arbitrary ratio depended on randomly selected posi-

tion of note signal. 

Situation II: different instrument manufacturers 

In this situation, we generated musical note samples from the 

same types of musical instruments but changed the manufac-

turers. In the same way, if multiple pitch estimation system 
has good generalization, it should perform well in this situa-

tion. Therefore, we evaluated our system in this situation by 

preparing the samples in the same way as in situation I. How-

ever, the samples in these test sets were from audio samples 

recorded with different instruments manufacturers from situa-

tion I. 

RESULTS AND DISCUSSIONS 

For result comparisons, we show F1-measures using bar 

charts with abbreviations for convenience. The abbreviations 

used in these charts are summarised in table 3 and table 4. 

Table 3. Feature types and their abbreviations. 

Abbreviations Feature types 

A Audio spectrum 

B Equal temperament scale 

C Simplified auditory model 

D Audio spectrum (log magnitude) 

E Equal temperament scale (log magnitude) 

F Simplified auditory model (log magnitude) 

 

Table 4. Musical instrument types and their abbreviations. 

Abbreviations Musical instrument types 

Cl Clarinet 

Ob Oboe 

Ho Horn 
Fl Flute 

Tr Trumpet 

 

Training performances 

We need to know how well the neural network learns from 

the training sets and our training method. Thus, we evaluated 

our system by using the training sets as test sets. The results, 

in Figure 5, show that all features produce high estimation 

scores. F1-measures from all instrument signals are higher 

than 0.94. 

Situation I 

From the results, in Figure 6, we found that our system per-

forms quite well even amplitudes and phases of signals are 

slightly changed. Most of all features produce F1-measures 

higher than 0.65 and interestingly, F1-measures are higher 

than 0.8 (except for French horn) when the neural network 

used features from the simplified auditory model. This is for 

both linear and log magnitude scales. 

Situation II 

This is the hardest situation for our system because all de-

grees of signal variations are very high. In Figure 7, we found 

that the neural network performs poorly for features gener-

ated from audio spectrum with linear magnitude scale 

whereas features with log-magnitude scale seem to improve 

the performances slightly. The important point is that, fea-

tures generated from simplified auditory model still boost the 

neural network performances in this situation especially 

when using log-magnitude scale. Almost all F1-measures 

from the system using this type of features are higher than 0.7 

except when we evaluated the system with signals from 

French horn. The reason should be frequency range of French 

horn since in all musical instruments in the test, French horn 

produces the lowest note. 
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Figure 5. Evaluations using the training sets. 
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Figure 6. Evaluations using situation I. 
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Figure 7. Evaluations using situation II. 
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Figure 8. Results using features from simplified auditory 

model for particular polyphony numbers. 
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Figure 9. Results using features from simplified auditory 

model when signals contain -10 dB reverberation.  

 

PERFORMANCE SUMMARY 

To summarise results from all evaluation cases, we use num-

ber of outperforming scores for each type of features. The 

results are illustrated in Table 5 using the same abbreviations 

as explained above. It is clearly that when using the neural 

network with features from simplified auditory model (log-

magnitude), the system performs the best for situation II. 
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Although these features cannot make the system perform well 

for situation I and the training sets, overall results still show 

that features from simplified auditory model (log-magnitude) 

are the best. 

Table 5. Performance Summary. 

 

 

Sets 

Feature Types 

A B C D E F 

Training sets 4 0 0 2 0 0 

Test sets 

Situation I 

0 2 3 0 0 1 

Test sets 

Situation II 

0 0 1 0 0 4 

Total 4 2 4 2 0 5 

 

ADDITIONAL EXPERIMENTS 

Situation II + reverberation 

We used SIR software [7] to add reverberation to the situa-

tion II test sets and evaluated our system with features from 

simplified auditory model (log-magnitude). The impulse 

response was “cAPS-ccp-xy3” from [8]. For detail compari-

sons, we show the results for each particular polyphony num-

ber (number of musical note per mixture sample). The results 

without reverberation are in Figure 8 whereas Figure 9 shows 

results from the same test sets with -10 dB reverberation 

added. As we can see, when the numbers of notes are less 

than four, the results from signals with reverberation are still 

higher than 0.6 for almost all instrument signals (except for 

French horn). 

CONCLUSION 

In this paper, we proposed musical pitch estimation system 

using simplified auditory model and feed forward neural 

network. The system can be use to estimate multiple pitch 

from audio signal generated from single type musical instru-

ment. Our extensive scope of this paper is to investigate per-

formances of the neural network when different types of 

features are used. From experiments, we found that using 

features from simplified auditory model produce better musi-

cal pitch estimation when timbres are slightly varied. 

REFERENCES 
 

[1] A. Pertusa and J. M. Inesta, "Polyphonic music 

transcription through dynamic networks and 

spectral pattern identification," presented at the 

Internetional Conference on Artificial Neural 

Networks in Pattern Recognition Acoustics, 

Florence, Itary, 2003. 

[2] T. Tolonen and M.Karjalainen, "A 

Computationally Efficient Multipitch Analysis 

Model," IEEE Transactions on Audio, Speech, and 

Language Processing, vol. 8, p. 9, 2000. 

[3] S. V. Kartalopoulos, Understanding Neural 

Networks and Fuzzy Logic: IEEE Press, 1996. 

[4] T. Irino and R. D. Patternson, "A Dynamic 

Compressive Gammachirp Auditory Filterbank," 

IEEE Transactions on Audio, Speech, and 

Language Processing, vol. 14, p. 11, 2006. 

[5] A. Klapuri, "Multipitch Analysis of Polyphonic 

Music and Speech Signals Using an Auditory 

Model," IEEE Transactions on Audio, Speech, and 

Language Processing, vol. 16, p. 12, 2008. 

[6] M. Goto, et al., "RWC music database," in ISMIR, 

2003. 

[7] C. Knufinke. (2005, SIR Impulse Response 

Processor. Available: www.knufinke.de/sir 

[8] J. Johnson. (2005, Impulse response of 1400 seat 

church. Available: www.noisevault.com 

 

 


