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ABSTRACT

The pitches produced by toy pianos are sometimes perceived to be inaccurate by listeners, some of whom report perceiv-
ing the perfect fifth above the nominal note of the pressed key. To investigate these assertions, the overtone frequencies
of a toy piano were measured in a frequency range of no more than the eighth harmonic and below 5 kHz, which are
considered to be important to the pitch perception of the human auditory system. Time-frequency and time-intensity
analyses of the overtones revealed periodic variation in frequency and amplitude, which might be caused by two close
vibrational modes. The pitch of a toy piano was found to be tuned to the frequencies of the overtones corresponding the
third and fifth harmonics. No fundamental frequency component was observed. The overtone of 1.5 times the missing
fundamental frequency appeared above G4. In addition, the overtone of 0.5 times the missing fundamental frequency
appeared above G5. The sounds consisting of the prominent overtones corresponding to the 1.5th and 3rd harmonics
can be perceived as the perfect fifth above the nominal note. The pitch of the toy piano was perceived as inaccurate in
part because the frequencies of the overtones corresponding to the third and fifth harmonics deviated by –4 to +24 cents
and +3 to +33 cents from equal temperament, respectively.

INTRODUCTION

The pitches produced by toy pianos are sometimes perceived
to be inaccurate by listeners. In particular, some Internet users
have noted that some toy pianos have slightly inaccurate tun-
ing. In addition, some people perceive duplex pitch correspond-
ing to frequencies of the nominal note and a perfect fifth above
the nominal note in certain registers.

We conducted an informal listening test using a toy piano,
the sound source of which consisted of steel bars. Ten listen-
ers with experience playing musical instruments (including six
absolute-pitch listeners) evaluated the pitches produced by the
toy piano compared to the pitches produced by a grand piano.
The nominal pitch was perceived by four listeners including
one absolute-pitch listener. The pitch of the perfect fifth above
the nominal note was perceived by four listeners including
three absolute-pitch listeners. The other two listeners experi-
enced duplex pitch perception, which depends on the listener’s
attention. The pitch of the toy piano was formed by the pitch
of the missing fundamental, since no fundamental component
exists and the frequencies of the overtones are not harmonic.
This might cause inaccurate and duplex pitch perception.

Although designed primarily for use by children, toy pianos
are sometimes played by professional musicians. In this study,
the frequencies and amplitude of the overtones of a toy piano
below 5 kHz and below the eighth harmonic were measured,
which are considered to contribute the pitch of the missing
fundamental. In addition, the relationship between theoretical
transverse vibration and the frequencies of the overtone and
perceived pitch of the toy piano were considered.

SOUND MECHANISMS

The sound source of the toy piano measured in this study con-
sists of steel bars inserted into a steel beam. The bars are ap-

proximately 3 mm in diameter. From precise measurements
with an electronic vernier micrometer, the cross section of the
bar was found to be not a perfect circle but rather a distorted
circle, the diameter of which ranged from 2.85 to 3.01 mm.

The base of the bars and the beam are shown in Fig. 1. The
base of the bars are scraped to reduce the diameter by approx-
imately 1 mm over a length of 10 to 15 mm, but the the shape
and thickness of the scraped sections of the bars are slightly
irregular among the bars. Delicate pitch tuning for each tone
can be achieved by the degree of scraping. A note is sounded
by pressing a key that causes a plastic hammer to strike the bar
30 mm from the clamped end. This mechanism is simple, and
often the hammer strikes the bar twice when a key is pressed.

Figure 1: Base of bars.

ANALYSIS

Audio recording

An audio recording was made on the floor of a musical in-
strument store on an IC recorder (Sharp ICR-PS380RM). The
recorder was manually held 15 cm above the keyboard, with
the microphone directed toward the key that was pressed. The
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recording settings were linear PCM, 44.1 kHz sampling, 16-bit
quantization, and stereo. Keys C4 to F6 in the chromatic scale
were each recorded twice. The following analysis used only
the left-channel signal.

Frequency analysis of the C4 tone

The waveforms of the two recordings of the C4 tone are shown
in Fig. 2. Figure 3 shows the power spectra that were calcu-
lated from the waveforms by applying a Hanning window to
the initial 6145 to 8192 samples from the absolute maximum
amplitude of the waveform. The vertical axis of Fig. 3 shows
the relative spectral level, where the 16-bit full-scale amplitude
of a pure tone is taken as 0 dB. As show in Fig. 3, overtones
exist up to around 20 kHz.
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Figure 2: Waveforms of two recordings for the C4 tone.
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Figure 3: Power spectra of the C4 tone from two recordings.

In this paper, the overtones with frequencies below 5 kHz and
below the eighth harmonic frequency are investigated, since
other components do not contribute to the perception of the
missing fundamental frequency [Ritsma, R. J. (1962)]
[Ritsma, R. J. (1963), Moore, B. C. J. et al. (1985)]. For exam-
ple, the components below the frequency of the eighth harmon-
ics of C4 (262 Hz), were analyzed, that is, below 2096 Hz.
The relative levels of the overtones below 2096 Hz of the two
spectra in Fig. 3 are nearly the same. The same tendency was
observed for other tones recorded twice. These results indicate
that the sounds played on the toy piano were sufficiently repro-
ducible.

To estimate the effects of background noise, the maximum
power spectrum of the noise obtained from 2048-point half-
overlapped FFTs was acquired in 1-s intervals, as shown in
Fig. 4. This figure indicates that the components above –50 dB

and below 600 Hz and those above –60 dB at other frequencies
were the overtones of the toy piano sound.
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Figure 4: Maximum spectrum of background noise in 1-s in-
tervals.

Spectrogram view of overtones

Figure 5 shows a spectrogram of the chromatic scale from C4
to F6 played on the toy piano sound. The prominent overtones
of the notes below F4 approximately correspond to the third,
fifth and eighth harmonics. Overtones of 1.5 times the miss-
ing fundamental frequency appeared above G4. In addition,
the overtones of 0.5 times the missing fundamental appeared
above G5.

Time-frequency and time-intensity analyses

To clarify the temporal variation of the frequency and intensity
of the overtones, the 8192-point FFT was calculated for the
2048-point Hanning-windowed waveform padded by 6144-point
zeros at the end. The starting point of the FFT was the sample
that exhibited the absolute maximum amplitude. FFT was cal-
culated iteratively by shifting the waveform by 1024 points.
Amplitude and frequency of the overtones were calculated by
3-point interpolation of the nearest points of the spectral peak.

Figure 6 shows amplitude envelopes for each overtone. Figure
7 shows the deviation from the mean frequency for each over-
tone. These figures show that the amplitude and frequency of
each overtone fluctuate in opposite phase. These fluctuations
are considered to be a beat with period of 100 to 150 ms, that
is, 7 to 10 Hz. Such fluctuations were also observed for other
notes. The beat might be caused by two vibrational modes that
are close in frequency. These two vibrational modes are the re-
sult of the slightly distorted shape of the bars, which deviate
from a perfect circle.

Frequency analysis of overtones.

To examine the accuracy of the tuning of the toy piano, the fre-
quency deviation of each overtone from the harmonic frequen-
cies of the fundamental frequency corresponding to the nomi-
nal note was precisely measured by calculating the 8192-point
FFT with Hanning windowing and 3-point interpolation. Table
1 shows the deviation from the correct harmonic frequencies,
that is, 0.5, 1.5, 3, 5 and 8 times the nominal fundamental fre-
quency, in cents for the 13 dominant notes.

As shown in the table, the frequency deviation ratios exhibit
no common trend among the overtones for all notes. In other
words, practical frequency ratios of the overtones to the fun-
damental frequency depend on not only the inherent properties
of the steel bar but also the tuning work of scraping the base of
the bar, as shown in Fig. 1.

The mean deviation of the third harmonic, which is the most
dominant contributor to the pitch of the missing fundamental
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Figure 5: Spectrogram of chromatic scale played on toy piano.
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Figure 6: Amplitude envelopes for each overtone.

frequency [Moore, B. C. J. et al. (1985)], was +10 cents. Ac-
cordingly, it may be better to consider the reference pitch of
A4 as 442.5 Hz, not as 440 Hz. The mean deviation of the fifth
harmonic was 8 cents higher than that of the third. The mean
deviation of the fifth harmonic is slightly higher than the in-
harmonicity of the piano tone [Járveláinen, H., et al. (2000)].
However, the pitch deviation of the third harmonics ranged
from –3 to +21 cents and those of the fifth ranged from +3
to +33 cents. The frequency difference limen for a pure tone
is approximately 5 cents in the most sensitive frequency re-
gion around 1 kHz [Moore, B. C. J. (1973)]. Although the fre-
quency difference limen for pitch in a melody can be large in
comparison with a pure tone, Table 1 indicates the possibility
that the missing fundamental frequency of the toy piano may
be perceived to be incorrect.

Intensity analysis of overtones

The intensity of the overtones was measured in the course of
the frequency measurements described in the previous section.
Figure 8 shows the relative amplitude in dB for each overtone
as a function of the nominal note . The results may be affected
to some extent by the directionality of the microphone used
for the recording and the radiation pattern of the toy piano;
however, Fig. 8 shows that the intensity of the overtones corre-
sponding to the 1.5th and 3rd harmonics were relatively strong
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Figure 7: Deviation from mean frequency for each overtone.

for the notes from F4 to F5. In addition, the intensity of the
overtones corresponding to the 0.5th harmonic become rela-
tively strong for notes above G5.

DISCUSSION

Dominant overtones and pitch perception

As shown in Fig. 8, the intensity of the overtones correspond-
ing to the 1.5th and 3rd harmonics were relatively strong for
the notes from F4 to F5. If a listener perceives these overtones
as the first and the second harmonics, the pitch would then be
perceived as the perfect fifth above the nominal note; which in
fact agrees with the perception of some listeners.

In addition, the intensity of the overtones corresponding to the
0.5th harmonic become relatively strong for notes above G5.
It appears that a new low partial tone gradually appears, such
as a Shepard tone [Shepard, R. N. (1964)], when the upward
chromatic scale is played on a toy piano.

Transverse vibration of bar

The sound source of the toy piano is steel bars inserted into
a steel beam. The boundary conditions of the bar are clamped
and free. Although the shape of the cross section of the bar
was not measured, the shape is assumed to be an ellipse that
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Table 1: Deviation from correct harmonic frequency in cents.
Asterisk (*) denotes the amplitude of an overtone below max-
imum noise level. N.F. denotes that no overtone was found.
A dash (—) denotes frequencies out of the frequency range
(above 5 kHz).

Nominal note and its frequency in equal temperament.
order C4 (262) E4 (330) F4 (349) G4 (392) A4 (440)
0.5 N.F. N.F. N.F. 7.4 9.03
1.5 *–16.7 –5.2 2.2 0.43 –53.6
3 18.7 16.7 22.3 –0.2 4.7
5 19.3 23.6 35.0 8.4 22.1
8 –77.7 –82.2 –71.6 –92.4 –84.0

C5 (523) E5 (659) F5 (698) G5 (784) A5 (880)
0.5 16.0 –0.4 –10.0 –4.4 –30.6
1.5 –9.4 1.3 –2.4 3.1 –21.8
3 3.1 16.7 19.8 23.9 –3.9
5 17.3 22.6 27.4 23.9 5.4
8 –94.2 — — — —

C6 (1047) E6 (1319) F6 (1397) Average S.D.
0.5 –9.6 5.7 2.9 –1.4 13.2
1.5 0.7 12.9 24.1 –4.0 19.2
3 15.2 5.7 17.7 12.3 9.2
5 — — — 20.5 8.6
8 — — — –83.7 8.6
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Figure 8: Relative amplitude of each overtone as a function of
nominal note.

is defined by the measured diameters of 3.00 and 2.86 mm at
angles of 90 degrees difference. The shape of the cross section
is also assumed to be constant from one end to the other, while
the base of the actual bar is scraped to remove approximately
1 mm of material over the section. Under these assumptions,
the frequency of this type of steel bar is given by the following
equation:

fi =
1

4π

(λi

l

)2
√

Ea2

ρ
, (1)

where E is Young’s modulus E = 2E+11 N/m2, L is the length
of the bar, ρ is density ρ = 7.87E+3 kg/m3, a is the major
or minor radius of the ellipse, and λi is a constant given by
cos(λi)cosh(λi)+1 = 0.

Table 2 shows the calculated and measured frequencies of the
overtones. Two theoretical frequencies are calculated for the
transverse waves for the major and minor axes, because the two
simultaneous vibration modes at close frequencies are consid-
ered to be the cause of the beat found in the time-frequency
and time-intensity analysis in the previous section.

Table 2: Calculated and measured transverse vibration frequen-
cies.

C4 (L = 0.289 m, a = 1.43E–3 or 1.50E–3 m)
Calculated

Order i λi Minor [Hz] Major [Hz] Measured [Hz]
4 10.996 842.1 871.1 793.4
5 14.137 1391.9 1439.9 1322.8
6 17.279 2079.3 2151.1 2001.2

C5 (L = 0.213 m)
2 4.694 282.5 292.2 264.1
3 7.855 791.1 818.4 780.6
4 10.996 1550.2 1603.7 1572.6
5 14.137 2562.4 2650.7 2642.6
6 17.279 3827.9 3959.9 3964.3

C6 (L = 0.155 m)
2 4.694 533.47 551.86 520.4
3 7.855 1493.9 1545.4 1570.4
4 10.996 2927.5 3028.4 3167.3

These results suggest that the theoretical transverse frequen-
cies are roughly consistent with the experimental results. How-
ever, the calculated frequency spacing of the overtones is smaller
than the measured value. This discrepancy in the frequencies
may be caused by the scraping of the base of the bars.

The difference between the two calculated frequencies, that
is, the beat frequency, is generally higher than the actual beat
frequency measured in the time-frequency and time-intensity
analyses. This may be caused by the scraping of the base of
the bars or the non-uniform diameter of the bars. Detailed mea-
surements of the shape of the base and the diameters of the bars
are required in order to simulate and predict the frequencies of
the overtones.

In Fig. 8, the order of the dominant overtone decreases as the
fundamental frequency increases. This trend is described by
the relationship between the striking position of the hammer
and the antinodal positions of the bars. Figure 9 schemati-
cally shows the transverse vibrations that dominate over each
C4, C5, and C6 tone. Figure 9 reveals that striking close to
the first antinodal point of the bar gives rise to low-order vi-
brational modes in the short bars. Furthermore, the lower fre-
quency overtones appear as the frequency of the note increases,
that is, as the length of the bar decreases (Fig. 5).
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Figure 9: Schematic of transverse vibrations observed for C4,
C5 and C6 tone.

SUMMARY

Time-frequency and time-intensity analyses of the overtones
revealed periodic variation in frequency and amplitude. This
might be caused by two close vibrational modes. The pitch of a
toy piano was found to be tuned by the frequencies of the over-
tones corresponding to the third and fifth harmonics. The over-
tone of 1.5 times the missing fundamental frequency appeared
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above G4. In addition, the overtones of 0.5 times the missing
fundamental appeared above G5. The sounds consisting of the
prominent overtones corresponding to the 1.5th and 3rd har-
monic can be perceived as the perfect fifth above the nominal
note. The pitch of the toy piano is perceived to be inaccurate in
part because the frequencies of the overtones corresponding to
the third and fifth harmonics deviated by –4 to +24 cents and
+3 to +33 cents from equal temperament, respectively.
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