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ABSTRACT 

This report proposes a new processing method for automatically detecting the states from the tire noise of passing ve-
hicles. To detect tire noise, we use a commercially available microphone as an acoustic sensor, which enables us to 
easily reduce the cost and size in realizing a practical detection system. We propose several feature indicators in the 
frequency and time domains to successfully classify the states into four categories: snowy, slushy, wet, and dry states. 
The method is based on artificial neural networks. The proposed classification is carried out in multiple neural net-
works using learning vector quantization. The outcomes of the networks are then integrated by the voting decision-
making scheme. From experimental results obtained for more than a week in snowy areas, it has been demonstrated 
that an accuracy of approximately 90% can be attained for predicting road surface states. 

INTRODUCTION 

The detection of road surface states is an important process 
for efficient road management. It is a substantial challenge to 
remotely obtain information about the surface states with 
sufficient prediction accuracy. In particular, in snowy seasons, 
prior information such as an icy state helps road users or 
automobile drivers to avoid serious traffic accidents. In prac-
tice, road surface states depend greatly on weather, road users, 
and other relevant factors. During two years, our study on the 
detection of road surface states using only tire noises emitted 
from passing vehicles has been ongoing at two observation 
sites near our campus at The University of Electro-
Communications and near Sapporo city. At each site, tire 
noise signals were collected with commercially available 
microphones as acoustic sensors, which enable us to easily 
reduce the cost and size to realize a practical system. In our 
previous report, we proposed a simple classification method 
using a few signals features that are readily extracted in the 
frequency domain of the noise signals [1]. The features of 
interest were the frequency at which the noise power spec-
trum reaches the maximum, the normalized magnitude at 1.5 
kHz in the cumulative distribution of the power spectrum, 
and the frequency at which the normalized magnitude takes a 
value of 0.5. Our experiment results revealed that classifica-
tion accuracy reaches approximately 73% at maximum when 
using the feature at 0.5, which is the last indicator of three 
features mentioned above. Interestingly, the accuracy in clas-
sification was improved by as much as 81% by combining 
the feature at 0.5 with the standard deviation of the cumula-
tive distribution curves. All classifications of concern to us, 
however, suffered from systematic problems for automatiza-
tion, in the previous study [1]. Therefore, it is necessary to 

continuosly develop practical classification methods with 
goal of remotely predicting road surface states as accurately 
as possible. 

In this report, we extract new signals features in the time 
domain from recorded tire noises. The features are based on 
the autocorrelation function of the tire noises. The effective-
ness of the features proposed is verified by noise data sam-
ples obtained at an observation site near Sapporo city and 
compare with visual inspections of actual road states. Fur-
thermore, to improve classification accuracy, our approach 
now uses artificial neural network (ANN), which is widely 
used to model involved relationships between input and out-
put data. In related works, McFall and Niitula [2] applied 
ANN to the classification task of the road surface states. 
They captured road surfaces with both a microphone for tire 
noise and a video camera for the visual road states, and fed 
these 51 signal features into their ANN system. The hybrid 
system that combines the surface images and tire noise re-
vealed correct classifications at a high accuracy of more than 
90%. However, the system did not work well during hours of 
darkness and experienced difficultly in identifying dry sur-
face states. Our ANN system is composed of sets of multiple 
neural networks and the final decision-making scheme. We 
improve accuracy by using only tire noise data as well as a 
small number of input data into the ANN system. 

SOUND SIGNAL ANALYSIS 

In the snowy season, we acquired tire noise signals at an 
observation site on the side of a four-lane national road near 
Sapporo city. The measurement system and experimental 
conditions were already presented in our previous article [1]. 
We introduce the following six features of the noise data and 
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apply them as input parameters of our classification systems. 
We classify the road surface states into three principal cate-
gories in the same framework as before [1]: 

Dry: Road surfaces with no water; the surface are truly dry.                                                                                     
Wet: Road surfaces are covered with water and remain wet. 
Vehicles splash water as they pass by and the tire tracks re-
main for a while. This state includes slushy water from melt 
snow.                                                                                
Snow-compacted: Snowy surfaces are compacted due to 
passing vehicles. The surfaces look completely white, includ-
ing the wheel tracks. 

Peak Frequencies 

We usually observe that timbre of tire noise is dependent 
on the road surface state. When the road has water on its 
surface, the high-frequency components of noise seem to 
increase as a whole in comparison with the frequency com-
ponents of dry surfaces and especially snowy surfaces. The 
most useful and predictable parameter of the features seem to 
be the frequency at which the power spectrum p(f) takes the 
maximum. 

Cumulative Distribution Analysis 

Since the sound pressure level depends greatly on the size 
of a vehicle and its tires, we cannot reliably detect road sur-
face states on the basis of only the magnitude of the spec-
trum. Then, we introduce the following cumulative distribu-
tion function of the power spectrum )f(P  that is clarified in 
our previous report [1]: 
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where fl = 300 Hz is the low-cut frequency. Generally, tire 
noise do not significantly contain frequency components 
higher than 10 kHz; consequently, the upper limit of integra-
tion with repect to frequency is calculated to be fh = 10 kHz. 
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Figure 1. Typical cumulative curves of the power spectrum 
of tire noises for five minutes. 

Typical cumulative distribution curves obtained from pass-
ing vehicles for a five-minute signal are shown in Fig. 1. The 
magnitudes in the wet state are lower than those in the dry 
and snowy states at all frequencies. This means that the wet 
state predominates at high frequencies in comparison with the 
other two states. From the cumulative curves in Fig. 1, we 
propose two classification features based on the appearance 
of distinct differences between the three curves. One feature 

is the normalized magnitude of )f(P  at a frequency of 1.5 
kHz (feature at 1.5 kHz). The other feature is the frequency at 
which the normalized magnitude of )f(P  takes a value of 
0.5 (feture at 0.5). From our examination of one-day sound 
data, both features are good predictors of the changing of 
surface states with time [1].  

Figure 2(a) shows the natural transition diagram for the 
different surface states. As expected, the snowy state changes 
to the wet state as the temperature rises, and changes to the 
dry state due to water evaporation when the temperature is 
further elevated. Our method allows for the change from the 
dry to wet states and the wet to snowy states. However, the 
direct transition from the snowy to dry states is not allowed, 
for example: the slushy state and/or wet state always exist in 
above processes. Unfortunately, the features at 0.5 in the 
slushy state have almost the same frequencies as those in the 
dry state, as shown in Figure 2(b). It is then difficult to clas-
sify these into two states successfully. The main reason for 
high detection errors must be a defect that the road is covered 
with slushy water and is recognized as the dry state incor-
rectly. 
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Figure 2. Transitions and threshold frequencies of the four 
states. (a) Natural transition diagram for the different states; 

(b) threshold frequencies Fl and Fh for the feature at 0.5. 

The slushy state is not always covered with snow: that is, 
parts of the road surface can still be snowy and other parts 
can already be dry due to water evaporation. Additionally, all 
vehicles do not always pass on the slushy or dry surfaces. It 
can then be expected that when data is collected for a long 
observation time (e.g., 30 minutes), the cumulative curves of 
the remaining three states, particularly the curves of the dry 
state, are potentially scattered in a random manner. It seems 
feasible from this speculation to discriminate the dry and 
slushy states by introducing statistical measures such as stan-
dard deviation. 

Autocorrelation Analysis 

Tire noise signal is a type of stochastic signal and can be 
considered to be a stationary or quasi-stationary process if the 
running conditions of a vehicle do not often change. The 
autocorrelation function (ACF) for a stationary signal is a 
measure of the time-related properties in data that is delayed 
by a fixed time. ACF tells us more about the signal, such as 
whether significant correlation between the time series exists 
and whether the similarity tendency of the same state remains 
from one observation to another. We focus here on the auto-
correlation function that is readily calculates from the power 
spectrum using FFT to extract new signal features in the re-
corded tire noises.  

Autocorrelation curves for five minutes are shown in Fig. 
3. We confine our attention to the first main lobe in each 
curve because important information about signal similarities 
generally appears here. As can be seen, the three curves de-
crease in magnitudes relatively absruptly with time lags. 
However, great differences exist in their shapes: the magni-
tudes for the wet state are entirely lower than those for the 
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dry and the snowy states. This result is somewhat expected 
from the fact that the magnitude of the high-frequency com-
ponents in the tire noise signal emitted from the road surface 
in the wet state is dominant in comparison with the magni-
tudes in the other two states. Since the high frequencies are 
equivalent in short time periods, the correlation in the wet 
state becomes small as the time lag is increased. To the con-
trary, when road surfaces are snowy and low-frequency com-
ponents predominate, a relatively strong correlation should 
remain at even short time lags.  

 

Figure 3. Autocorrelation curves for five minutes 

Two features are indeed inferred from the autocorrelation 
data in Fig. 3. One feature is the magnitude of the autocorre-
lation at 0.2 ms (feature at lag 0.2 ms), where the largest 
differences in magnitude appear. The other feature is the time 
lag at which the magnitude takes a value of 0.5 (feature at 
ACF 0.5). In Fig. 3, the feature at lag 0.2 ms is 0.76, 0.5, and 
0.04 for the snowy, dry, and wet states, respectively. The 
feature at ACF 0.5 is 0.34, 0.2, and 0.08 ms, respectively. 

 

Figure 4. One-day observation near Sapporo city.  
 (a) The feature at lag 0.2 ms, and (b) at ACF 0.5 

To determine whether both the proposed features of the 
ACFs, we first examine typical one-day sound data that were 
collected on the second day of the three-day observation in 
our previous report [1]. The reason why we use such data is 

that the data include all four different states. Figure 4 shows 
the time histories of two new features. The observation 
started at 0 a.m. and ended the next day at 0 a.m. At the same 
time, we visually monitored the surface states with a video 
camera. Interestingly, even if observation with a camera is 
unavailable, we can generally assume that the road surface 
changed from the snowy to slushy state before changing to 
the wet state in the morning, remained wet until 2 p.m., and 
after that changed to the dry state. Therefore, more accurate 
classification into snowy, wet, and dry states seems to be 
feasible by employing either feature on the basis of certain 
threshold values. The classification ability by using only two 
ACFs shows high precision and they achieve a classification 
accuracy rate of 93%, as shown in Table 1. 

Table 1. One-day experiment results of detecting the road 
surface states using 5-minute sound signals 

Methods

Wet Snowy

Threshold values

Upper Lower

Dry Slushy

Standard deviation [Hz]
Accuracy

[%]

Feature at lag 0.2 ms

Feature at ACF 0.5 [ms]

< 0.41 > 0.56

< 0.20 > 0.25

< 151

< 151

> 151

> 151

93

93
 

APPLICATION OF ANN TO CLASSIFICATION 

ANN is a sophisticated network system that is made of 
many neurons connected with each other in a way similar to 
the human brain. The neural network is composed of a num-
ber of highly interconnected processing neurons working in 
parallel to solve a specific problem. Our proposed classifica-
tion method is carried out in sets of multiple neural networks 
using a learning vector quantization (LVQ) network. The 
LVQ network is a hybrid network which uses both unsuper-
vised and supervised learning to form classifications [3, 4]. 
The construction of the cumulative curves and ACF plots for 
a neural classifier is based on the conceptual block diagram 
shown in Fig. 5. The schematic block diagram consists of 
preprocessing, processing, and post-processing.  

 

 
Figure 5. Schematic block diagram of automatic detection of 

road surface states 

Input data for the neural network are the pre-processed tire 
noise signals with the following six features extracted from 
the noise signals: peak frequeny, the feature at 1.5 kHz, and 
at 0.5, standard deviation, the feture at lag 0.2 ms, and at 
ACF 0.5, as described above. The processing phase uses 
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Table 2. Feature data set of detecting the road surface states over one-week using 5-minute sound signals  

 
 

multiple neural networks with these six features. We employ 
three teams in the ANNs, in which each team consists of 12 
LVQ networks. For example, Team 1 contains three groups, 
A, B, and C, and individual group with four LVQs from #1 to 
#4 are classifiers for each surface state. In this report, the 
work of LVQ#1 is assigned for specifying the snowy state. 
At the same time, the input data of LVQ#2 to #4 are provided 
for classifying the slushy, wet, and dry states, respectively. 
Therefore, the output data of the processing phase are the 
four types of the surface states. When multiple neural net-
works are utilized, the post-processing phase is required to 
combine the outcomes of the multiple neural networks for 
making a decision on road surface states and to provide a 
level of confidence for the decision. The output of each team 
is then combined to produce the final decision-making 
schemes. 

All LVQs must be trained using known road surface states 
before they are used as part of a classifier. Each of the LVQs 
is trained separately and their weight vectors are initialized 
independently. After the training process, the individually 
different weight vectors are determined definitely. In the 
testing phase, the states are examined along with all the other 
prespecified ones. The schematic diagram for the testing 
phase is the same as the one shown in Fig. 5. The use of mul-
tiple sets of neural networks arises from the need to achieve a 
higher accuracy rate and provides a way of calculating a de-
gree of confidence for each identified state. The voting 
scheme is the simplest method of combining the output of 
multiple neural networks. A decision is made based on which 
type of road surface states receives the most votes [5]. 

To evaluate the performance of the present automatic de-
tection method, we examined the noise data of two weeks at 
the same observation site as before (near Sapporo city). The 
data of the first week is the training set and the remaining 
data of second week is the testing set. Table 2 shows the 
numbers of tire noise records required for each surface state. 
The total number of the feature data for each day is 288 by 
24×60 min/5min. For one-week testing observation, the total 
number of data is 2016. The total number of noises recorded 
for training the classifier is 400 per team. 

The ANN method in this study is performed using a 
MATLAB program. To test the neural networks, 288 re-
corded tire noise signals for each day are used. Table 3 sum-
maries the verification results. The results show the perform-
ance of the automatic classification of the four types of the 
surface states. For example, the total number of tire noise 
signals for the snowy state is 721. Of these data, 706 signals 
are correctly recognized as snowy; therefore, the accuracy 

rate is 98%. It can be noted that the error rate changed daily, 
although the changes are slight. In our analysis, the highest 
accuracy of 96.5% is attained on the 3rd day, while the accu-
racy on the 5th day gives the lowest, 73%. The accuracies in 
the remaining days are greather than 89% and average value 
for the entire one-week is approximately 90%. It is also noted 
that the classification of the snowy state gives the highest 
accuracy rate. The classification of the slushy state gives the 
lowest accuracy rate. Unfortunately, these factors cannot be 
completely avoided in only the present classification method. 
However, by including more appropriate sound features as 
input data that specify road surface states and additional me-
teorological information such as road surface temperature, 
the classification accuracy must be increased. 

CONCLUSIONS 

We advanced the research of multiple neural network 
analysis using both the two signal features and the four fea-
tures proposed in our preceding report [1]. By comparing tire 
noise data samples obtained near Sapporo city with visual 
inspection data of the actual road surfaces, we evaluated the 
automatic classification capability at all hours of the day and 
night using only the noise signals. Typical one-week sound 
data and sufficient training data demonstrated that the four 
types of road surface conditions can be classified with a high 
classification accuracy of 90% on average, which is almost 
the same accuracy rate stated in the previous related report 
[2]. The present study leads us to believe that six signal fea-
tures together with the neural network structure offer great 
potential for the automatic detection of road surface states. 
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