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ABSTRACT

This report proposes a new processing method toraatically detecting the states from the tire aa$ passing ve-
hicles. To detect tire noise, we use a commerceltyilable microphone as an acoustic sensor, wdmctiles us to
easily reduce the cost and size in realizing atpalodetection system. We propose several feandieators in the
frequency and time domains to successfully claghiystates into four categories: snowy, slushy, amed dry states.
The method is based on artificial neural netwoillkse proposed classification is carried out in npldtineural net-
works using learning vector quantization. The omtes of the networks are then integrated by thengatiecision-
making scheme. From experimental results obtainednbre than a week in snowy areas, it has beemuenated
that an accuracy of approximately 90% can be atbfor predicting road surface states.

INTRODUCTION

The detection of road surface states is an impbpiatess
for efficient road management. It is a substartielllenge to
remotely obtain information about the surface stawgth
sufficient prediction accuracy. In particular, imosvy seasons,
prior information such as an icy state helps roadrs or
automobile drivers to avoid serious traffic accidern prac-
tice, road surface states depend greatly on weatyest users,
and other relevant factors. During two years, dudyon the
detection of road surface states using only tiieesemitted
from passing vehicles has been ongoing at two whten

sites near our campus at The University of Electro-

Communications and near Sapporo city. At each tite,
noise signals were collected with commercially tde
microphones as acoustic sensors, which enable easity
reduce the cost and size to realize a practicaésysin our
previous report, we proposed a simple classificatiethod
using a few signals features that are readily etéthin the
frequency domain of the noise signals [1]. The ues of
interest were the frequency at which the noise pspec-
trum reaches the maximum, the normalized magniaide5
kHz in the cumulative distribution of the power spem,
and the frequency at which the normalized magnitalles a
value of 0.5. Our experiment results revealed tfessifica-
tion accuracy reaches approximately 73% at maxinunen
using the feature at 0.5, which is the last indicaif three
features mentioned above. Interestingly, the acguiraclas-
sification was improved by as much as 81% by combgin
the feature at 0.5 with the standard deviationhef ¢cumula-
tive distribution curves. All classifications of mcern to us,
however, suffered from systematic problems for anatiiva-
tion, in the previous study [1]. Therefore, it iscessary to
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continuosly develop practical classification methodith
goal of remotely predicting road surface statea@sirately
as possible.

In this report, we extract new signals featureshim time
domain from recorded tire noises. The featuresbased on
the autocorrelation function of the tire noisese Hifective-
ness of the features proposed is verified by nd&a sam-
ples obtained at an observation site near Sappbroand
compare with visual inspections of actual roadestafur-
thermore, to improve classification accuracy, oppraach
now uses artificial neural network (ANN), which wgdely
used to model involved relationships between irgnd out-
put data. In related works, McFall and Niitula [@pplied
ANN to the classification task of the road surfestates.
They captured road surfaces with both a micropHondire
noise and a video camera for the visual road states fed
these 51 signal features into their ANN system. Tilerid
system that combines the surface images and tiise me-
vealed correct classifications at a high accurdapare than
90%. However, the system did not work well durirogits of
darkness and experienced difficultly in identifyidgy sur-
face states. Our ANN system is composed of setsuttiple
neural networks and the final decision-making saheWe
improve accuracy by using only tire noise data afi as a
small number of input data into the ANN system.

SOUND SIGNAL ANALYSIS

In the snowy season, we acquired tire noise sigatabn
observation site on the side of a four-lane natiooad near

Sapporo city. The measurement system and experinent

conditions were already presented in our previatisle [1].
We introduce the following six features of the moitata and
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apply them as input parameters of our classificasigstems.
We classify the road surface states into threecjpah cate-
gories in the same framework as before [1]:

Dry: Road surfaces with no water; the surface are ayy
Wet: Road surfaces are covered with water and rematn we
Vehicles splash water as they pass by and thdréioks re-
main for a while. This state includes slushy wdtem melt
snow.

Snow-compacted: Snowy surfaces are compacted due to
passing vehicles. The surfaces look completelyeyliitclud-

ing the wheel tracks.

Peak Frequencies

We usually observe that timbre of tire noise isatefent
on the road surface state. When the road has watets
surface, the high-frequency components of noisenste
increase as a whole in comparison with the frequem-
ponents of dry surfaces and especially snowy sesfathe
most useful and predictable parameter of the feataseem to
be the frequency at which the power spectp(fihtakes the
maximum.

Cumulative Distribution Analysis

Since the sound pressure level depends greatljesize
of a vehicle and its tires, we cannot reliably detead sur-
face states on the basis of only the magnitudehefspec-
trum. Then, we introduce the following cumulativistdbu-
tion function of the power spectruf( f ) that is clarified in
our previous report [1]:

f
jp(f' )t
P(f)=f— ®

wheref, = 300 Hz is the low-cut frequency. Generally, tire
noise do not significantly contain frequency comgmts
higher than 10 kHz; consequently, the upper lirhiintegra-
tion with repect to frequency is calculated tadfibe 10 kHz.
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Figure 1. Typical cumulative curves of the power spectrum
of tire noises for five minutes.

Typical cumulative distribution curves obtainednfrpass-
ing vehicles for a five-minute signal are showrFig. 1. The
magnitudes in the wet state are lower than thoshendry
and snowy states at all frequencies. This mearistheawet
state predominates at high frequencies in compaxisth the
other two states. From the cumulative curves in Eigwe
propose two classification features based on tipeaance
of distinct differences between the three curvese @ature
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is the normalized magnitude @f f) at a frequency of 1.5
kHz (feature at 1.5 kHz). The other feature isftequency at
which the normalized magnitude &f f) takes a value of

0.5 (feture at 0.5). From our examination of ong-daund
data, both features are good predictors of the gihgnof
surface states with time [1].

Figure 2(a) shows the natural transition diagram tfe
different surface states. As expected, the snoatg sthanges
to the wet state as the temperature rises, andyebao the
dry state due to water evaporation when the terjreras
further elevated. Our method allows for the chafigm the
dry to wet states and the wet to snowy states. Mexyehe
direct transition from the snowy to dry states @& allowed,
for example: the slushy state and/or wet state yavexist in
above processes. Unfortunately, the features atirD.the
slushy state have almost the same frequenciesas th the
dry state, as shown in Figure 2(b). It is thenidlift to clas-
sify these into two states successfully. The meason for
high detection errors must be a defect that the ivaovered
with slushy water and is recognized as the dryesitator-
rectly.

Figure 2. Transitions and threshold frequencies of the four
states. (a) Natural transition diagram for theadéht states;
(b) threshold frequencids andF, for the feature at 0.5.

The slushy state is not always covered with snbwat s,
parts of the road surface can still be snowy arroparts
can already be dry due to water evaporation. Acialily, all
vehicles do not always pass on the slushy or drfases. It
can then be expected that when data is collected fong
observation time (e.g., 30 minutes), the cumulateres of
the remaining three states, particularly the cufethe dry
state, are potentially scattered in a random mariheeems
feasible from this speculation to discriminate tiy and
slushy states by introducing statistical measuwes sis stan-
dard deviation.

Autocorrelation Analysis

Tire noise signal is a type of stochastic signal ean be
considered to be a stationary or quasi-stationarggss if the
running conditions of a vehicle do not often changhke
autocorrelation function (ACF) for a stationary sgrs a
measure of the time-related properties in dataithdelayed
by a fixed time. ACF tells us more about the sigsath as
whether significant correlation between the timeeseexists
and whether the similarity tendency of the sami stamains
from one observation to another. We focus hereherauto-
correlation function that is readily calculatesnfréhe power
spectrum using FFT to extract new signal featunethé re-
corded tire noises.

Autocorrelation curves for five minutes are showrfFig.
3. We confine our attention to the first main loibeeach
curve because important information about sigmallarities
generally appears here. As can be seen, the threescde-
crease in magnitudes relatively absruptly with titags.
However, great differences exist in their shapks: rhagni-
tudes for the wet state are entirely lower tharséhfor the
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dry and the snowy states. This result is somewkptaed
from the fact that the magnitude of the high-fraggyecom-
ponents in the tire noise signal emitted from thedr surface
in the wet state is dominant in comparison with thagni-
tudes in the other two states. Since the high #aqies are
equivalent in short time periods, the correlationthie wet
state becomes small as the time lag is increasethd con-
trary, when road surfaces are snowy and low-frequenm-
ponents predominate, a relatively strong corratasbould
remain at even short time lags.
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Figure 3. Autocorrelation curves for five minutes

Two features are indeed inferred from the autotatioen
data in Fig. 3. One feature is the magnitude ofati®corre-
lation at 0.2 ms (feature at lag 0.2 ms), where |&rgest
differences in magnitude appear. The other feasutiee time
lag at which the magnitude takes a value of O.&t(fe at
ACF 0.5). In Fig. 3, the feature at lag 0.2 ms &00.5, and
0.04 for the snowy, dry, and wet states, respdgtivEhe
feature at ACF 0.5 is 0.34, 0.2, and 0.08 ms, reisgby.
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Figure 4. One-day observation near Sapporo city.
(a) The feature at lag 0.2 ms, and (b) at ACF 0.5

To determine whether both the proposed featurethef
ACFs, we first examine typical one-day sound das were
collected on the second day of the three-day observin
our previous report [1]. The reason why we use siafa is
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that the data include all four different stategufé 4 shows
the time histories of two new features. The obd@wma
started at 0 a.m. and ended the next day at OAd.the same
time, we visually monitored the surface states vaithideo
camera. Interestingly, even if observation withaamera is
unavailable, we can generally assume that the soafdce
changed from the snowy to slushy state before dhgng

the wet state in the morning, remained wet ungl.@., and
after that changed to the dry state. Therefore enagcurate
classification into snowy, wet, and dry states seam be
feasible by employing either feature on the basisentain

threshold values. The classification ability byngsonly two

ACFs shows high precision and they achieve a claatidn

accuracy rate of 93%, as shown in Table 1.

Table 1. One-day experiment results of detecting the road
surface states using 5-minute sound signals

Threshold values
Methods Upper | Lower | Standard deviation [Hz] AC([:;: ]a Y
Wet | Snowy | Dry Slushy
Feature at lag 0.2 ms | <0.41|>0.56 [< 151 > 151 93
Feature at ACF 0.5 [ms][ <0.20 | > 0.25 |< 151 > 151 93

APPLICATION OF ANN TO CLASSIFICATION

ANN is a sophisticated network system that is mafie
many neurons connected with each other in a wailasito
the human brain. The neural network is composeal rmim-
ber of highly interconnected processing neuronskimgrin
parallel to solve a specific problem. Our proposkegsifica-
tion method is carried out in sets of multiple rauretworks
using a learning vector quantization (LVQ) netwoilthe
LVQ network is a hybrid network which uses both wper-
vised and supervised learning to form classificeti¢3, 4].
The construction of the cumulative curves and AGHspfor
a neural classifier is based on the conceptualkbtii@gram
shown in Fig. 5. The schematic block diagram cassig
preprocessing, processing, and post-processing.

Input data: Tire sound from
all passing vehicles for 5 minute
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Figure 5. Schematic block diagram of automatic detection of

road surface states

Input data for the neural network are the pre-pssed tire
noise signals with the following six features exteal from
the noise signals: peak frequeny, the featuresakHtz, and
at 0.5, standard deviation, the feture at lag 02 amd at

ACF 0.5, as described above. The processing phasg us
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multiple neural networks with these six featuree #hploy

three teams in the ANNS, in which each team cangibtl2

LVQ networks. For example, Team 1 contains thremigs,

A, B, and C, and individual group with four LVQs fraf to

#4 are classifiers for each surface state. In t@port, the
work of LVQ#1 is assigned for specifying the snostgte.

At the same time, the input data of LVQ#2 to #4@n@vided

for classifying the slushy, wet, and dry statespeetively.

Therefore, the output data of the processing plaasethe

four types of the surface states. When multipleralenet-

works are utilized, the post-processing phase gsiired to

combine the outcomes of the multiple neural netwaide

making a decision on road surface states and teideaa

level of confidence for the decision. The outpueath team
is then combined to produce the final decision-mgki
schemes.

All LVQs must be trained using known road surfates
before they are used as part of a classifier. Bathe LVQs
is trained separately and their weight vectorsiaitéalized
independently. After the training process, the vidlially
different weight vectors are determined definitely. the
testing phase, the states are examined along Wittheaother
prespecified ones. The schematic diagram for tiséinte
phase is the same as the one shown in Fig. 5. Shefunul-
tiple sets of neural networks arises from the rneesthieve a
higher accuracy rate and provides a way of caliniga de-
gree of confidence for each identified state. Tlaoding
scheme is the simplest method of combining the wiud
multiple neural networks. A decision is made basedvhich
type of road surface states receives the most {6fes

To evaluate the performance of the present autondati
tection method, we examined the noise data of tweks at
the same observation site as before (near Sapjigjo Tthe
data of the first week is the training set and rtbeaining
data of second week is the testing set. Table 2vshbe
numbers of tire noise records required for eacfasarstate.
The total number of the feature data for each da388 by
24x60 min/5min. For one-week testing observation,ttial
number of data is 2016. The total number of noisesrded
for training the classifier is 400 per team.
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rate is 98%. It can be noted that the error ratmghd daily,
although the changes are slight. In our analybis,highest
accuracy of 96.5% is attained on the 3rd day, winiéeaccu-
racy on the 5th day gives the lowest, 73%. The racies in
the remaining days are greather than 89% and axvem@ge
for the entire one-week is approximately 90%. klso noted
that the classification of the snowy state gives Highest
accuracy rate. The classification of the slushtesti@ves the
lowest accuracy rate. Unfortunately, these factamsnot be
completely avoided in only the present classifmatnethod.
However, by including more appropriate sound fesgtuas
input data that specify road surface states andiadal me-
teorological information such as road surface teatpee,
the classification accuracy must be increased.

CONCLUSIONS

We advanced the research of multiple neural network
analysis using both the two signal features andfdhe fea-
tures proposed in our preceding report [1]. By corimggtire
noise data samples obtained near Sapporo city visilal
inspection data of the actual road surfaces, wéuated the
automatic classification capability at all hourstioé day and
night using only the noise signals. Typical oneveeund
data and sufficient training data demonstrated thatfour
types of road surface conditions can be classifiitld a high
classification accuracy of 90% on average, whiclalimost
the same accuracy rate stated in the previousecklaport
[2]. The present study leads us to believe thasigral fea-
tures together with the neural network structurierofreat
potential for the automatic detection of road stefatates.
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Table 2. Feature data set of detecting the road surfatessbver one-week using 5-minute sound signals

Road surface [ Training Daily test data Total number
state data [ Ist day |[2nd day|3rd day | 4th day [ 5th day | 6th day | 7th day | of test data
Snowy 100 8 144 131 34 30 259 115 721
Slushy 100 86 72 39 25 133 29 17 401
Wet 100 35 72 118 164 124 - 156 669
Dry 100 159 - - 65 1 - - 225
Total 400 288 288 288 288 288 288 288 2016

Table 3. Results of automatic detection of road

surfacestaver one-week using 5-minute sound signals

Road surface Correct results of each daily road surface state Total [Accuracy rate
state 1st day [2nd day|3rd day | 4th day [ 5th day | 6th day [ 7th day | number [%]
Snowy 7 140 129 30 27 258 115 706 98
Slushy 73 52 33 7 82 18 9 274 68.3
Wet 34 70 116 161 100 - 149 630 94.2
Dry 143 - - 61 1 - - 205 91.1
Accuracy rate [%]| 89.2 91 96.5 90 73 95.8 | 94.8 1815 90
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