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ABSTRACT 

A common type of integral to solve numerically in computational room acoustics and other applications is the diffrac-
tion integral. Various formulations are encountered but they are usually of the Fourier-type, which means an oscillat-
ing integrand which becomes increasingly expensive to compute for increasing frequencies. Classical asympotic solu-
tion methods, such as the stationary-phase method, might have limited accuracy across the relevant frequency range. 
The method of steepest descent is known to offer efficient evaluation of such integrals but for most diffraction inte-
grals, the optimum deformed integration path might be impossible to find analytically. A recent numerical version of 
the method of steepest descent finds an approximate path numerically and this paper will show the application of this 
method to one specific edge diffraction integral which is valid for finite and infinite edges. The required integration 
path sections are found numerically via applying a Taylor expansion of the integrand oscillator function, involving up 
to the fourth-order derivative for this example, and a subsequent series inversion. Once the path is avaliable, two effi-
cient quadrature methods are used for the exponentially decaying integrands, Gauss-Laguerre and Gauss-Hermite. 
The method is compared with brute-force numerical integration using Gauss-Kronrod quadrature in the Matlab im-
plementation. Numercial examples demonstrate that the new method has a computation time which is independent of 
frequency and of edge length, whereas that of the brute-force method depends heavily on frequency as well as edge 
length. It is shown that the accuracy of the new method decreases for low frequencies and for geometrical cases 
where the receiver point is near a zone boundary. Methods to tackle these limitations are outlined. 

INTRODUCTION 

Edge diffraction modeling is used in studies of, e.g., noise 
barriers [1], loudspeaker enclosures [2], room acoustics [3], 
sea floor scattering [4] as well as other scattering cases. The 
term edge diffraction refers to the component of the sound 
field which complements the spatially discontinuous geomet-
rical solutions so that the total sound field is correct and 
therefore continuous in space [5]. Classical solutions have 
been presented by Kirchhoff for the diffraction of a thin half-
plane which is hit by a plane wave [6], and by Macdonald in 
1915 for the diffraction from a rigid wedge which is insoni-
fied by a point source [7]. 

In 1957, Biot and Tolstoy presented an explicit time-domain 
expression for the diffraction from a rigid wedge as caused 
by a point source. This solution was later explored by Med-
win who suggested a decomposition into contributions by 
secondary sources along the edge, which could then even by 
expanded to second-order diffraction [1,8]. Medwin’s de-
composition into secondary edge source contributions was 
later put in a form with analytic directivity functions by 
Svensson et al [9, 10]. This analytic directivity function form 
was finally presented in a frequency-domain form [11] which 
was shown to be identical to classical contour integral solu-
tions [5, 12]. The equivalence between those classical con-
tour integral solutions and the time-domain solution by Biot 
and Tolstoy has also been demonstrated by Chu [13].  

Another family of high-frequency asymptotic solutions stem 
from the geometrical theory of diffraction [14] and the uni-
form asymptotical theory of diffraction [15]. One asymptotic 
solution was transformed into a time-domain solution by 
Vanderkooy [2]. Yet another family of solutions is based on 
the Kirchhoff diffraction approximation [16,17] which has 
been shown to not be asymptotically correct for high fre-
quencies in some cases [18].  

A unique feature of the methods presented in [1,9-11] is that 
they can be applied to finite edges. Obviously, finite edges 
require higher-order diffraction, and the methods suggested 
for higher orders have so far not included so-called slope 
diffraction [19-20]. 

Common to all these formulations is that they must be com-
puted numerically. For time-domain formulations, such com-
putations require for each edge a large number of very-short-
range integrals with a well-behaved, non-oscillatory, real-
valued integral [10, 21]. In the frequency domain, a single 
edge is described by a single long-range integral of an oscil-
latory, complex-valued integral, which becomes increasingly 
expensive as the frequency increases. The topic of this paper 
is how to compute such oscillatory diffraction integrals. 

The classical problem of numerical integration of oscillatory 
integrals can be solved with asymptotic methods such as the 
method of stationary phase or the saddle point method [22-
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23] but they get increasingly inaccurate at lower frequencies. 
The method of steepest descent [23] is very efficient and 
accurate but requires the access to the path of steepest de-
scent after applying analytic continuation of the integrand. 
Such paths can typically not be found for anything but very 
simple integrands, and for the diffraction integrals studied 
here, such paths can not be found analytically. However, 
recent developments have lead to the numerical method of 
steepest descent [24-25] which uses an approximation of 
these paths [26] and the result is a very efficient method as 
will be shown in this paper. A more detailed presentation can 
be found in [27]. 

In the theory chapter, the specific diffraction integral to be 
solved is presented, and brief descriptions of the classical 
method of steepest descent as well as the numerical method 
of steepest descent are given. In a chapter of numerical ex-
amples the accuracy and computation time for the new 
method, as well as benchmark methods, are given. Limita-
tions and further developments are discussed in chapter X 
and conclusions are drawn in chapter Y. 

The edge diffration integral 

The integrals of interest here are Fourier-type integrals, that 
is, integrals that can be written on the form 

    

! 

I = f z( )e jkg z( ) d z
a

b

" ,  (1) 

where the function g(z) is called the oscillator function. Inte-
grals of this type are increasingly expensive to compute nu-
merically as the wave number k, or frequency, increases. 
Here, the focus is on one particular integral, which gives the 
diffracted wave from a single finite or infinite edge [Svens-
son 2009], 
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where !, m, and l are all real-valued functions of z. Writing 
this integral on the form in Eq. (1), the oscillator function g is 
then, 

         
    

! 

g z( ) = "m" l = " z " zS( )2
+ rS

2 " z " zR( )2
+ rR

2  (3) 

where zS, rS, zR, rR are geometrical parameters as illustrated 
in Figure 1. The functions m and l are also geometrical enti-
ties as shown in Figure 1, and the functions !i are  

    

! 
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sin #$i( )

cosh #%( )& cos #$i( )
 (4) 

where the angles "i are 
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"3 = # %$S +$ R , "4 = # %$S %$ R

 (5) 

and # is an auxiliary function 

    

! 

" = cosh#1 z # zS( ) z # zR( ) + ml
rSrR

. (6) 

The angles $S and $R are shown in Figure 1.  

The method of steepest descent 

For Fourier integrals, on the form in Eq. (1), where the f and 
g functions can be assumed to be analytic functions, 
Cauchy’s integral theorem implies that the integration path 
can be deformed into the complex plane without changing the  

 
Figure 1. Illustration of the wedge and the relevant geometri-

cal parameters. 

integral’s value. Then, a path can be chosen such that the 
oscillations of the integrand are removed. This will be fulfil-
led if the deformed path is such that the real part of g(z) is 
kept constant. Figure 2 illustrates a deformed path from inte-
gration range endpoint a to the other endpoint b, for the 
oscillator function in Eq. (3). A geometry example was 
chosen with rS = 1 m, zS = -1 m, rR = 1.5 m, zR = 0.75 m. The 
edge extends from a = -2 m to b = 2 m.  

 If there happen to be stationary-phase points along the origi-
nal integration range, i.e., points where g’(z) = 0, then cross-
ing deformed paths, as also indicated in Figure 2, must be 
constructed. For all these deformed path sections the oscilla-
tor function are on the form 

    

! 

g z( ) = " + j p = g zep/sp( ) + j p = g hz p( )[ ]   (7)  

where % is a constant, which must then be given by the oscil-
lator function’s value at either one of the endpoints of the 
original integration range, zep, or at a stationary point, zsp, 
where the deformed path section crosses the original integra-
tion range. The imaginary part of the function g(z) along the 
deformed path section is described by a parameter p. With 
these deformed paths described by the function hz(p), the 
integral will be given by a sum of contributions. These con-
tributions have one of two forms, the first one of which is 
valid for the two paths that connect to the integration range 
endpoints, zep, 

    

! 

I = e
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The second form applies to paths that connect to stationary 
points, zsp, 
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It should be noted that in Eq. (9), the two paths that cross the 
original integration range on the real axis through a stationary 
point, as seen in Figure 2, have been combined into a single 
integral. An integral on the form in Eqs. (8) or (9) will then 
have no oscillation factor in the integrand but rather an expo-
nentially decaying factor, e-kp or e-kp2, which dies out faster 
the higher the wavenumber k is. Such numerical integration 
can be solved efficiently with Gaussian quadrature as shown 
below. A problem is, however, that finding the path hz(p), 
which fulfills Eq. (7), on an analytical form is not possible, if 
the oscillator function is even moderately complex. There-
fore, a Taylor series expansion of the path can be employed, 
that is, to write the path on the form 
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m
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The (complex) coefficients ai can be found via a Taylor ex-
pansion of the oscillator function in Eq. (3). For a stationary 
point, a slightly different form is used for the path, 

    

! 
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i
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m
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The m-th coefficient will involve derivatives of g of the m-th 
order, and the first few coefficients are 
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for stationary points zsp. In the expression for a1, the param-
eter s = sign(p g’’(zsp)), which leads to that p < 0 corresponds 
to the incoming path (towards the stationary point) and p > 0 
corresponds to the outgoing path. The derivatives of the 
oscialltor function g(z) on the form in Eq. (3) are straightfor-
ward to derive. 

These Taylor series expansions certainly have limited accu-
racy as the path diverges from the real axis, as indicated in 
Fig. 2. However, the exponentially decaying factor in the 
integral which is to be solved, makes sure the integral can be 
solved accurately with Gaussian quadrature as shown in the 
next subsection. 

The numerical method of steepest descent 

Once the paths. hz(p) are available, then there are two types 
of integrals to solve, as given by Eqs. (8) and (9). For the 
path sections to and from integration range endpoints, zep, the 
integral to solve is the one in Eq. (8). This is a form for which 
Gauss-Laguerre quadrature can be used, leading to 

    

! 

I "
1
k

e
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For the stationary point, the integral has a slightly different 
form, see Eq. (9), and Gauss-Hermite quadrature can be em-
ployed instead, which yields 

    

! 
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The weighting factors, wi, and evaluation points, xi, for the 
Gauss-Laguerre case are given in Table 1. It can be noted that 

 

 
(a) Real part of g(z) 

 
(b) Imaginary part of g(z) 

Figure 2. Example of the oscillator function g(z) in Eq. (3) 
Dashed lines illustrate approximate paths of steepest descent. 
(a) The real part of g(z), and the finite edge is illustrated with 
a thick line. (b) The imaginary part of g(z). Thick lines indi- 

cate the edge, and branch cuts for Im [g(z)]. 

 

the whole set of values (for i = 1,…,n) will depend on the 
truncation value n. Further coefficients can be derived as 
described in [28]. 

Table 1. Sets of evaluation points, xi, and weighting factors, 
wi, for the Gauss-Laguerre quadrature. 

 xi wi 
n = 1 1 1 
n = 2 0.585786 

3.414213 
0.853553 
0.146447 

n = 3 0.415775 
2.294280 
6.289945 

0.711093 
0.278518 

0.0103893 
 

Table 2. Sets of evaluation points, xi, and weighting factors, 
wi, for the Gauss-Hermite quadrature. 

 xi wi 
n = 1 0 1 
n = 2 ±0.707107 0.886227 
n = 3 0 

±1.22474 
1.18164 

0.295409 
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Some numerical issues 

In general, there might be any number of stationary points 
along the integration range but for the oscillator function in 
Eq. (3), a single stationary point exists, and it is the so-called 
apex point, zapex. This is the point on the edge through which 
the shortest path from the source, via the edge to the receiver 
passes, and it is given by  

    

! 

zapex =
zRrS + zSrR

rS + rR
. (14)  

Furthermore, a stationary point can be of first or higher order, 
corresponding to which is the first derivative thatis non-zero. 
For the integral studied here, the (single) stationary point is 
of order 1, meaning that 

    

! 

" g zapex( ) = 0 , while 
    

! 

" " g zapex( ) # 0 . 
Stationary points of order n would have n+1 branches of the 
solution to Eq. (7).  

The oscillator function g(z) might have branch cuts, and the 
one studied here, in Eq. (3), does indeed have such cuts. They 
are illustrated in Fig. 2 (b), where the imaginary part of g(z) 
display discontinuities at the four cuts which appear as lines 
perpendicular to the real axis, and starting at the four points 

    

! 

z = zS ± jrS  and     

! 

z = zR ± jrR . (15)  

An important observation is that those branch cuts are steep-
est descent paths, and they don’t connect to the real axis, 
which means that the steepest descent paths that start/end at 
the real axis will (analytically) never cross those branch cuts. 
For, approximated paths, however, there is the potential risk 
that there could be a crossing of the branch cuts. It can be 
shown that for a two-term approximation of the path, the 
following geometrical criterion must be fulfilled in order to 
avoid any such branch cut crossings [27], 

 
    

! 

zS " zR

rS + rR
<1 . (16)  

A final issue to address is that the non-oscillator part of the 
integrand in Eq. (3), that is, f(z) in Eq. (2), has singularities 
when the receiver passes a zone boundary, where either the 
direct sound or the specular reflection suddenly ap-
pears/disappears. This singularity causes problem for the 
method presented here, as will be demonstrated in the nu-
merical examples below. Two approaches are possible in 
order to solve this problem. A simple approach is to use an 
analytical approximation for the integrand in a small interval 
around the apex point, since the singularity is local around 
there. Such an approach was described in [21] for a time-
domain formulation of the integral in Eq. (2), and has also 
been tested for the present method in [27]. A more advanced 
approach would be to apply generalized Gaussian quadrature, 
as outlined in [29]. 

 

NUMERICAL EXAMPLES 

A few numerical examples are presented below. One finite 
wedge has been chosen as a demonstration case, with the 
geometrical parameters rS = 2 m, $S = !/4, zS = 0 m, rR = 5 m, 
$R = 3!/2, zR = 0 m, $W = 3!/2, and with the wedge extend-
ing from -5 m to 5 m. As a benchmark solution, the applica-
tion of Gauss-Kronrod quadrature, as implemented in the 
Matlab function quadgk, is used. A very small tolerance 
value (2e-14) is set for this benchmark numerical integration. 
Furthermore, for one case, the impulse response was calcu-
lated as in [10,21] and after applying an FFT, results could be 
compared with the new method and the benchmark method. 
A sampling frequency of 48 kHz was used for this time-

domain calculation. The new method has been implemented 
in Matlab, and while Matlab implementations do not directly 
give the most efficient implentations, a comparison between 
methods should still be valid. 

Effect of frequency on accuracy and computation 
time 

The effect of frequency on the accuracy of the new method is 
illustrated in Figure 3, together with one example of an im-
pulse response based calculation using a sampling frequency 
of 48 kHz. First, it can be observed that with the new method, 
a machine precision level of the errors is achieved for higher 
frequencies, but the error is clearly limited at lower frequen-
cies. Still, a relative error below 1e-3, clearly acceptable in 
many circumstances, results from 50 Hz and up for the cho-
sen geometry, as long as 20 quadrature points are used. Inter-
estingly, the impulse response based result is quite accurate at 
low frequencies but the error increases with frequency so the 
performance is quite mediocre for higher frequencies. The 
number of Gaussian quadrature points has a large effect on 
the accuracy, but quite a limited effect on the computation 
time. Table 1 presents computation time results for a few 
frequencies, and as expected, the benchmark method gets 
more and more demanding, computation-wise, as the fre-
quency increases. All these timing experiments were run 
using Matlab on a high-end Dell workstation. 
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Figure 3. Relative error as function of frequency for the new 

method, with different number of quadrature points. Also 
presented as ‘IR’ is the result from an impulse response-

based calculation. 

 

Table 3. Timing examples 
Frequency Benchmark 

method 
New 

method 
0.5 kHz 5.7 ms 1-2 ms 
1 kHz 6.5 ms 1-2 ms 

10 kHz 19.1 ms 1-2 ms 
20 kHz 29.6 ms 1-2 ms 

 

 

Breakdown near zone boundaries 

As a test of the new method’s performance near zone boun-
daries, the same geometry was studied but here the receiver 
angle was varied along an arc such that 

  

! 

" R # 0, 3$ / 2[ ] . 
Thereby, the receiver will cross the two zone boundaries, one 
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at   

! 

" R = 3# / 4 $ 2.36  and one at   

! 

" R = 5# / 4 $ 3.93 . As be-
fore, benchmark results were computed using quadgk and a 
very low tolerance value. Figure 3 shows the relative error 
for the new method as function of receiver angle, and for two 
frequencies, 1 kHz and 10 kHz. As can be seen in the figure, 
large errors result around the two zone boundaries. Further-
more, the region of inaccurate results is larger for the lower 
frequency. The number of quadrature points has a strong 
influence on the relative error near the boundaries. As dis-
cussed above and in [21], the singularity issues occur for a 
very small range of the integration range and consequently, 
that small range could be treated separately, either using an-
other quadrature method or by using an analytical approxima-
tion as in [21]. Yet another possibility to tackle the problems 
in the areas around the zone boundaries is to apply general-
ized Gaussian quadrature, as in [29], for this specific integral. 
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(b) 

Figure 4. Relative error as function of  receiver angle   

! 

" R  for 
(a) 1 kHz and (b) 10 kHz. 

CONCLUSIONS 

The high accuracy and efficiency of a new numerical method 
for solving diffraction integrals has been demonstrated. Spe-
cial care needs to be taken for receiver positions that are 
close to the zone boundaries, but ways to do this have been 
outlined. The accuracy decreases for low frequencies, but on 
the other hand, classical quadrature methods are very effi-
cient for lower frequencies. This new method would be 
equally applicable to other Fourier-type integrals as well. 
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