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ABSTRACT 

An approach to real-valued time-domain implementation of modal beamformer for spherical microphone arrays is 
proposed. The advantage of the time-domain implementation is that we can update the beamformer when each new 
snapshot arrives. Our technique is based on a modified filter-and-sum spherical harmonics domain (SHD) beamform-
ing structure. The time series received at the microphones are converted into SHD data using spherical Fourier trans-
form. The SHD data input to the steering unit and then feed a bank of finite impulse response (FIR) filters. The filter 
outputs are summed to produce the beamformer output time series. The FIR filters tap weights are optimally designed 
by making a compromise among multiple conflicting array performance measures such as directivity, mainlobe spa-
tial response variation (MSRV), sidelobe level, and robustness. The design problem is formulated as a multiply con-
strained problem which is solved using second-order cone programming (SOCP). Results of simulations show good 
performance of the proposed time-domain SHD beamformer design approach. 

INTRODUCTION 

Spherical Harmonics Domain (SHD) beamforming technol-
ogy has recently become an important research issue in three-
dimensional (3D) sound reception, sound field analysis for 
room acoustics, direction of arrival (DOA) estimation, and so 
on. A spherical array is more flexible than other array geome-
tries for forming 3D beampattens, and the modal beamform-
ing can be performed using the elegant spherical harmonics 
framework. Several modal beamforming approaches to 
spherical arrays have been studied, e.g., regular phase-mode 
pattern design [1], non-adaptive and adaptive multiple-null 
steering techniques [2], Dolph-Chebyshev pattern design 
approach [3],  and optimal beamforming methods [4-6], etc.  

The studies presented above, however, are all based on a 
signal model in the frequency domain, where complex-valued 
modal transformation and array processing is employed. In 
order to achieve a broadband beamformer, which is usually 
required for speech and audio applications, the broadband 
array signals are decomposed into narrow frequency bins 
using the discrete Fourier transform (DFT) and each fre-
quency bin is independently processed using a narrowband 
beamforming algorithm, and then an inverse DFT is em-
ployed to synthesize the broadband output signal. Since the 
frequency-domain implementation is performed with block 
processing, it might be unsuitable for time-critical speech and 
audio applications due to its associated time delay. 

It is well known that, in classical element space array proc-
essing, the broadband beamformer can be implemented in the 
time domain using the filter-and-sum structure [7]. The key 
point of the filter-and-sum beamformer design is how to cal-
culate the FIR filters’ tap weights, in order to achieve the 
desired beamforming performance.  

The spherical array modal beamforming can also be imple-
mented in the time domain with the real-valued modal trans-
formation and the filter-and-sum beamforming structure. 
Meyer and Elko recently proposed a novel time-domain im-
plementation structure for a spherical array modal beam-
former [8], within the spherical harmonics framework. The 
real and imaginary parts of the spherical harmonics are em-
ployed as the spherical Fourier transform basis to convert the 
time domain broadband signals to the real-valued spherical 
harmonics domain, and the look direction of the beamformer 
can be tactfully decoupled from its beampattern shape. To 
achieve a frequency independent beampattern, Meyer and 
Elko proposed to employ inverse filters to decouple the fre-
quency-dependent components in each signal channel, how-
ever, such kind of inverse filtering could damage the system 
robustness  [1]. Moreover, since no systematic performance 
analysis framework has been formulated, all the mutually 
conflicting broadband beamforming performance measures, 
such as directivity factor, sidelobe level, and robustness, etc. 
cannot be effectively controlled. 

In this paper, an optimal broadband modal beamforming 
framework implemented in the time domain is presented. Our 
technique is based on a modified filter-and-sum modal beam-
forming structure. We derive the expression for the array 
response, the beamformer output power against both isotropic 
noise and spatially white noise, and the mainlobe spatial re-
sponse variation (MSRV) in terms of the FIR filters’ tap 
weights. With the aim of achieving a suitable trade-off 
among multiple conflicting performance measures (e.g., di-
rectivity index, robustness, sidelobe level, mainlobe response 
variation, etc.), we formulate the FIR filters’ tap weights 
design problem to a multiply constrained optimization prob-
lem which is computationally tractable.  
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BACKGROUND 

Spherical Fourier transform 

The standard Cartesian ),,( zyx  and spherical ),,( r  coor-
dinate systems are used. Consider a unit magnitude plane 
wave impinging on a sphere of radius a  from direction 

),( 000  . The spherical harmonics domain expression of 

the sound pressure on the sphere surface at an observation 
point ),( sss   is given by [9]  
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where ck /  is the wavenumber with c  being the sound 
speed, and f 2  being the temporal radian frequency 

with f  being the frequency, the superscript * denotes com-

plex conjugation, )(kabn  is a function of array configuration, 

with available analytical expressions [9], and m
nY  is the 

spherical harmonics of order n  and degree m  given by 
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where  )(cosm
nP  denotes the associated Legendre function 

and 1i .  

The sound pressure is spatially sampled at the microphone 
positions s , Ms ,,1 , where M  is the number of mi-

crophones. The microphone positions are required to satisfy 
the following discrete orthonormality condition: 
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where 'nn  and 'mm  are the Kronecker delta functions, and 

s  is a real value depending on sampling scheme. For uni-

form sampling, which is assumed through this paper, in order 

that  4
21

   S

M

s s d , we have Ms /4  .  

In order to compute up to N th order spherical harmonics, 
the number of microphones M  should be larger than or 
equal to 2)1( N  to avoid spatial aliasing.  

We assume that the time series received at the sth micro-
phone is )(txs  and the frequency-domain notation is 

),( sfx  . Its discrete spherical Fourier transform is given by  
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Using (3), the sound field is transformed from the spatial 
(element-space) domain into the spherical harmonics domain. 

Spherical harmonics domain beamforming 

Using spherical harmonics domain beamforming, the array 
output, denoted by )( fy , can be calculated as [4]: 
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where )(* fwnm  are the weight function. In vector notation, 
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n
nmnmb w w with )vec(  denoting stacking all 

the entries in the parentheses to obtain an 1)1( 2 N  col-

umn vector. T)(  and H)(  denote the transpose and the Her-
mitian transpose, respectively. 

The array output power is given by  
 

)( fPout )()()( fff bb
H
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where )( fbR  is the covariance matrix of bx .  

A modal beamformer that has a rotational symmetrical 
beampattern around the look direction 0  can be obtained as 

long as the array weights take the form [1]  
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which means the weights are divided into two parts, of which 

)()12/(4 0 m
nYn  act as the steering units that are re-

sponsible for steering the look direction by 0  and )( fcn  

act as pattern generation. 

The robustness is an important measure of array performance 
and is commonly quantified by the white noise gain (WNG), 
i.e., array gain against white noise. Assuming that 

Ms /4  , WNG is given by 
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where T
Nn ccc ],,,,[ 0 c . 

The directivity pattern, denoted by ),( fB , is given by 
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where nP  is the Legendre polynomial and   is the angle 

between   and 0 .  

Using (7) in (4) gives 
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TIME-DOMAIN IMPLEMENTATION 
STRUCTURE 

The mathematical analysis of the modal transformation and 
beamforming was discussed above for complex spherical 
harmonics. We next consider the time-domain implementa-
tion of the broadband modal beamformer. Since the real-
valued coefficients are more suitable for a time-domain im-
plementation, we can work with the real and imaginary parts 
of the spherical harmonics domain data. 

We assume that the sampled broadband time series received 
at the sth microphone is 

slTtss txlx  |)()( , where sT  is the 
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sampling interval. Considering that )(m
nY  is independent of 

frequency, similar to (3), the broadband spherical harmonics 
domain data is given  
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where )(lxnm  is the time-domain representation of  )( fxnm  

in  (3). 

We can apply the filter-and-sum structure to a modal beam-
former. That is, we place a bank of real-valued FIR filters at 
the output of the steering unit, the filters act as the role of 
complex weighting )( fcn  in a broadband frequency band. 

Let nh  be the impulse response of the FIR filter correspond-

ing to the spherical harmonics of order n , i.e., 
T

nLnnn hhh ],,,[ 21 h , Nn ,,0  . Here, L  is the length of 

each FIR filter. Performing the inverse Fourier transform to 
(10) and considering that the response of the filter nh  over 

the working frequency band is approximately equal to )( fcn ,  

the time-domain beamformer output, denoted by )(ly , can be 
given by  
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where   denotes the convolution and 
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where )Re(  and )Im(  denote the real part and imaginary 

part, respectively,  
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According to (12) and (14), the time-domain implementation 
of the broadband modal beamformer is given in Figure. 1.  

In this beamformer implementation structure, the modal 
transformation unit and steering unit is similar as that sug-
gested by Elko et al [8]. However, the parameters here are 
different from that in [8]. The FIR pattern generation unit is 
the contribution of this paper. Our goal is then to choose the 
impulse responses of these FIR filters to achieve the desired 
frequency-wavenumber response of the modal beamformer.  

The total weighting function in the pattern generation unit 
corresponding to the nth order spherical harmonics at fre-
quency f is given by 
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where TfTLjfTj ss eef ],,,1[)( 2)1(2   e  and 

2/)1(0 sTLT   is introduced to compensate the inherent 

group delay of the FIR filters.  

We use )(ˆ kcn  in (15) in lieu of )(kcn  in (9) and let 
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Figure 1.  Time-domain implementation of broadband modal beamformer. 
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where   denotes the Kronecker product and 
)(),(),( fff eau  . 

The distortionless constraint in the spherical harmonics do-
main is [4]  
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DESIGN OF FIR FILTERS 

The isotropic noise covariance matrix is given by 
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where )(2 fn is the power spectral density of the isotropic 

noise, )}]vec({[ 0
N
n

n
nmnb b b ,   denotes the Hadamard (i.e., 

element-wise) product of two vectors, and }{diag   denotes a 
square matrix with the elements of its arguments on the di-
agonal.  

Consider a special case with only isotropic noise impinging 
on the microphone array. We use (6) with )( fbR  replaced 

by the isotropic noise covariance matrix )( fbisoQ  to obtain 

the isotropic noise-only beamformer output power 
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For a broadband isotropic noise that occupies the frequency 
band ],[ UL ff  with Lf  and Uf  being respectively the lower 

and upper bound frequency, its broadband covariance matrix, 

denoted by hisoQ , can be given by performing the integration 

with respect to f  over the region ],[ UL ff  
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where the integration can be approximated by performing 
summation. 

Assume that the isotropic noise has a flat spectrum 
1)(2 fn  over the frequency band ],[ UL ff . The broadband 

isotropic noise-only beamformer output power is 
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Consider another special case where only spatially white 
noise with power spectral density )(2 fnw  impinging on the 

microphone array. In the case of Ms /4  , the spatially 

white noise-only beamformer output power, denoted by 
)( fPwout , is given by 

 

)( fPwout
2

0

2

|)(|
)(4

fw
M

f N

n

n

nm
nm

nw 
 


  





N

n

T
n

nw f
M

f

0

2
2

|)(|
)(4

eh
 .  (23) 

Assume that the spatially white noise has a flat spectrum 
1)(2 fnw  over the whole frequency band ]2/,0[ sf . The 

broadband beamformer output power, denoted by woutP , is 

given by 
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The broadband white noise gain, denoted by BWNG , is then 
defined as 
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A common measure of performance of an array is the direc-
tivity. The directivity factor )( fD , or directive gain, can be 
interpreted as the array gain against isotropic noise, which is 
given by 
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Frequently, we express the directivity factor in dB and refer 
to it as the directivity index (DI), )(log10)( 10 fDfDI  . 

The MSRV is defined as 

),( fMSRV |),(),(| 0  ff TT uhuh ,  (27) 

where 0f  is a chosen reference frequency. 

Let ],[ ULk fff  ),,2,1( Kk  , MLj Θ  ),,1( MLNj  , 

and SLi Θ  ),,1( SLNi   be a chosen (uniform or non-

uniform) grid that approximates the frequency band 
],[ UL ff , the mainlobe region MLΘ , and the sidelobe region 

SLΘ , respectively. We define an 1KNML  column vector 

MSRVγ  and an 1SL KN  column vector SLB , whose entries 

are respectively given by 
 

),(][ )1( jkMSRVKjkMSRV f  γ ,  (28) 

),(][ )1( ikKikSL fB B .  (29) 

Then, the norm of MSRVγ , i.e., qMSRV |||| γ , can be used as a 

measure of the frequency- invariant approximation of the 
synthesized broadband beampattern over frequencies. The 
subscript },2{ q  stands for the 2l  (Euclidean) and 
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l (Chebyshev) norm, respectively. Similarly, qSL |||| B  is a 

measure of sidelobe behavior. 

There are many performance measures by which one may 
assess the capabilities of a beamformer. Commonly used 
array performance measures are directivity, MSRV, sidelobe 
level, and robustness. The trade-off among these conflicting 
performance measures represents the beamformer design 
optimization problem. After formulating the broadband 
spherical harmonics domain beampattern ),( fB (17), the 
broadband isotropic noise-only beamformer output power 

isooutP  (22), the broadband white noise gain BWNG  (25), the 

mainlobe spatial response variation vector MSRVγ  (28), and 

the sidelobe behavior vector SLB  (29), the optimal array 

pattern synthesis problem for broadband modal beamformer 
can be formulated as  
 


h

min , }4,3,2,1{ ,  

subject to MfB k /4),( 0  , Kk ,,2,1   

1isooutP , 21
|||| qMSRVγ ,  

32
|||| qSLB , 4

1 BWNG ,  (30) 

where },2{, 21 qq , and 4
1}{   include a cost function 

and three user parameters. Using the similar process tech-
nique as proposed in our earlier paper [7] for classical array 
processing, the optimization problem (30) can be reformu-
lated in a convex form as the so-called SOCP which can be 
solved efficiently using an SOCP solver such as SeDuMi [10].  

SIMULATION EXAMPLES 

In this section, a numerical example is provided to illustrate 
the performance of the proposed approach. 

We consider a rigid spherical array of radius 4.2 cm with 
32M  microphones located at the center of the faces of a 

truncated icosahedron. An order of 4N  is used for sound 
field decomposition and Ms /4  . The sampling fre-

quency is 14700sf  Hz. The frequency band [500 Hz, 5000 

Hz] is discretized using 51K  frequency grids  Lk ff  
)1/()1(*)/lg(10  Kkff LU , Kk ,,2,1  . The length of the FIR fil-

ters is 65L . Unless otherwise stated, we assume 
]40:2:0[ MLΘ  and ]180:2:48[ SLΘ , which means 

a uniform grid of 2 is used to discretize the directions. 

Assume that we want to design a Time-Domain Robust 
Maximal-directivity (TDRMD) modal beamformer. The op-
timization problem (30) in this case can be formulated as  

1 , 2 , 3 , and 4  being a user parameter. 

Assume that M/44   . The FIR filter h  is determined by 

solving the optimization problem and its subvectors 

Nhhh ,,, 10   are shown in Figure 2(a). We substitute h  into 

(15) to get )(ˆ fcn  and display them in Figure 2(b). Using (17), 

the beampattern as a function of frequency and angle are 
calculated on a grid of points in frequency and angle. The 
resulting beampatterns are shown in Figure 2(c), where we 
have included a normalization factor 4/M  so the ampli-
tudes of the patterns at the look direction are equal to unity 
(or to 0 dB). The DI and WNG of the time-domain modal 
beamformer are calculated by using (26) and (8), respectively. 
The results are shown in Figure 2(d) for various frequencies. 
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Figure 2.  Performance of beamformer using robust maximal 
directivity design. (a) The 5 FIR filters, (b) the weighting 
function, (c) the beampattern, and (d) the DI and WNG at 
various frequencies. 
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It is seen from Figure 2(d) that the WNG of this beamformer 
is higher than -3 dB, which is suitable for most applications. 
The DI of this beamformer is also good. The results show 
that this design can provide a good tradeoff between the di-
rectivity and the robustness. 

CONCLUSION 

The real-valued time-domain implementation of the broad-
band modal beamformer in the spherical harmonics domain 
has been presented. The broadband modal beamformer is 
composed of the modal transformation unit, the steering unit, 
and the pattern generation unit. The pattern generation unit is 
independent of the steering direction and is implemented 
using a filter-and-sum structure. The elegant spherical har-
monics framework leads to more computationally efficient 
optimization algorithm and implementation scheme than 
conventional element-space based approaches. The broad-
band array response, the beamformer output power against 
both isotropic noise and spatially white noise, and the 
mainlobe spatial response variation are all expressed as the 
functions of the FIR filters’ tap weights. The FIR filters de-
sign problem is formulated as a multiply constrained problem, 
which ensures that the resulting beamformer can provide a 
suitable trade-off among multiple conflicting array perform-
ance measures such as directivity, mainlobe spatial response 
variation, sidelobe level, and robustness. The performance of 
the proposed approach is demonstrated by a number of simu-
lations. 
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