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ABSTRACT 

When general boundary element method(BEM) is applied to Helmholtz integral equation(HIE), integration 
singularity and hyper-singularity occurs. A self-adaptive Gauss quadrature algorithm was proposed to overcome the 
singularity. In this technique, the initial singular boundary element (father element) was divided into temporary 
refined small elements(children elements), and the integral on initial element was transformed to Gauss quadrature on 
children elements. The children elements can further be divided into smaller elements until integral solution 
converged at an allowable tolerance without increase boundary elements number as the refined children elements 
were cleared simultaneously when singular integration finished. Taking the advantages of this technique, the 
radiation surface can be coarsely meshed so as to reduce elements number and computational effort. Then the 
convergence behavior and application scope of this adaptive scheme was researched, and it is showed that this 
adaptive scheme can only be applied to singular or weak-singular integration. A numerical case about the sound 
radiation of a uniformly pulsating sphere was investigated to validate the adaptive algorithm, and numerical solutions 
agree well with analytical solutions with relative error less than 1.5dB. Then BEM coupled with FEM were applied to 
predict submarine vibration-noise considering fluid-structure interaction effects. By visualization the near-field sound 
pressure distribution, high sound pressure area was localized. Finally, the underwater radiated sound power was 
calculated and the peak frequencies were identified. Reduction of the engine periodic-isolator's stiffness can 
effectively transfer the sound power of peak frequencies to band-spectrum and the vibration noise of the line 
spectrum is controlled. 

INTRODUCTION 

Since the early sixties BEM has been used in wave 
propagation and scattering problem by Jaswon, Symm [1,2]. 
Chen and Chertock [3,4] firstly use BEM to solve acoustic 
radiation and scattering problem. Since BEM requires only 
modeling the boundary surface of radiation object rather than 
the entire field domain, so BEM is widely used to solve the 
HIE for predicting noise. However, when BEM is applied to 
calculate near-field sound pressure, singularity and hyper-
singularity of HIE occurs [5-9]. Recently Visser [10] 
proposed a local adaptive Gauss quadrature to overcome 
singular and hyper-singular integration. In this paper a global 
self-adaptive BEM quadrature algorithm is introduced to 
overcome solution singularity, then the convergence behavior 
and application scope of the algorithm is researched. Results 
show that adaptive Gauss quadrature can be applied to 
singular or weak singular integration, and for hyper-singular 
integration, non convergent solution is inevitable. 

SELF-ADAPTIVE GAUSS QUADRATURE FOR 
HELMHOLTZ SINGULAR INTEGRATION 

Boundary Element Formulation 

In a homogeneous medium at rest and considering the three-
dimensional linear time-harmonic problem of acoustics, the 
governing differential equation is the Helmholtz equation: 

2 3( ) ( ) 0 ,u x k u x x DΔ + = ∈ ⊂
K K K

\                                       (1) 

where ( )u x
K

represents the complex acoustic pressure(often 
called pressure for short), Δ is Laplace 
operator, /k cω= denotes the wave number,ω is the angular 
frequency, c is the speed of sound in fluid, and D stands for 
the three-dimensional domain of propagation, D∂ denotes the 
boundary of D .Herein Neumann problem in external acoustic 
is considered, so the boundary condition is satisfied: 

( ) / ( ) ( ) ,nu x n x skv x x D∂ ∂ = ∈∂
K K K K

                                  (2) 

where ( )n x
K

denotes the unit normal at x D∈∂
K

and directed 

into D , ( )nv x
K

is the normal velocity at x
K

, fs i cρ=  

where fρ is the density of the medium of propagation. In the 
case when the domain D is unbounded , the above problem 
has to satisfied the Sommerfeld radiation condition as 

fr → ∞ for 3-D problems, that: 

1 1( ) ( ) , ( ) / ( ) ( )
ff fu x O r u x r iku x o r− −= ∂ ∂ − =

K K K
                              (3) 
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Then Helmholtz equation can be solved: 

( ) ( )( ) ( ) [ ( ) ( )]
( ) ( )S

u y G rx u x G r u y dS
n y n y

α ∂ ∂
= −

∂ ∂∫
JKK K JK
JK JK                          (4) 

where y
JK

is so called source points located on the boundary 

surface and x
K

is field points in the fluid domain, ( )xα
K

is a 

geometry related coefficient, ( )xα
K

=1 when Dx∈
K

, Dx∉∂
K

, 

( ) 1/ 2xα =
K

when Dx∈∂
K

, and ( ) 0xα =
K

 when D Dx∉ ∂
K

∪ . 
( )G r  is the Green function in free space, that: 

( , ) / 4ikrG y x e rπ= −
JK K

                                                              (5) 

r x y= −
K JK

is the 2-norm of vector r x y= −
K K JK

. 

Numerical discretization 

Divide D∂ into N small boundary elements 1 2, , , Nγ γ γ" , 
typically linear triangle or quadrilateral, so eqn. (4) is 
discretized, that  

1

( ) ( , ) ( )
2 ( )j

N
i i

j
j

u x G y x u dS y
n yγ

=

∂
+

∂∑∫
JK JK JK JK

JK  

1
( , ) ( ) ( ) , ( )

j

N

ji n i
j

sk G y x v x dS y x D
γ

=

= ∈∂∑∫
JK JK K JK JK

                          (6) 
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∂
+
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1
( , ) ( ) ( ) , ( )

j

N

ji n i
j

sk G y x v x dS y x D
γ

=

= ∈∑∫
JK JK K JK JK

                            (7) 

eqn.(6) are a set of N linear equations to determine the N 
unknown variables 1 2, , Nu u u… . To solve the acoustic field 
variables in eqn. (7), the boundary variables in eqn. (6) has to 
be first determined. Herein exterior acoustic problems in free 
space is considered and following expressions are defined: 

1 2[ ( ), ( ), , ( )]T
Nu x u x u xu

K K K
� "  

1 2[ ( ), ( ), , ( )]T
Nn n nv x v x v xnv

K K K
� "

( , )[ ] ( )
( )j

i
ij ij

G y x dS y a
n yγ

∂
=

∂∫A
JK JK JK
JK�    

[ ] ( , ) ( )
j

ij i ijsk G y x dS y b
γ

=∫B
JK JK JK

�  

 So the linear system of eqn. (6) is: 

( / 2 )+ = nI A u B v                                                                (8) 

where I denotes the diagonal matrix of order N.  
The eqn. (8) of linear system shows that the Neumann 
problem is more stable than Dirichlet problem[10], this can 
be related to the shift in the singular value spectrum 
introduced by addition of the dialogue matrix / 2I .However, 
when source point coincides with or closes to field point, 
singularity and hyper-singularity of Green function and its 
derivative is inevitable, so advanced method like self-
adaptive Gauss quadrature is needed to deal with this 
singularity which will be discussed in next section. 

Self-adaptive quadrature of quadratic quadrilateral 
boundary element 

Visser [10] give a local mesh refinement scheme to solve the 
Helmholtz hyper-singular and singular integral. In fact, this 
local refinement scheme is however invalid for hyper-
singular integral because the convergence behavior of this 
type of quadrature is poor. In this paper, a self-adaptive 
global mesh refinement scheme is introduced to solve 
singular integral ( , )

j
jiG y y dS

γ∫
JK JK , see Figure 1. For hyper-singular 

integral ( , ) / ( )
j

jiG y y n y dS
γ
∂ ∂∫

JK JK JK , as an analytic solution exists, so 

it won't be discussed in this paper. Herein considering 
quadratic quadrilateral(QUAD8) boundary element is 
adopted, by coordinate transformation, the integration on 
QUAD8 can be transformed to a standard square area by 
interpolation , as illustrated in Figure 1.  

η

ξ0

 
Figure 1. Coordinate transformation of a quadratic 
 quadrilateral   element to a standard square element 

The shape function of each node is: 

2

2

(1 )(1 ) / 4 1,2,3,4

(1 )(1 ) / 2 5,7

(1 )(1 ) / 2 6,8

j j j

j j

j j

N j

N j

N j

ξ ξ η η

ξ η η

ξ ξ η

⎧ = + + =
⎪⎪ = − + =⎨
⎪

= + − =⎪⎩

                             (9) 

So the variables and their derivatives on QUAD8 can be 
interpolated via shape function, that: 

8 8

1 1
( , ) , ( , )j j j jj j

x N x y N yξ η ξ η
= =

= =∑ ∑
 8 8

1 1/ ( , ) , / ( , )j j jjj jx N x x N xηξξ ξ η η ξ η
= =

∂ ∂ = ∂ ∂ =∑ ∑
8 8

1 1/ ( , ) , / ( , )j j jjj jy N y y N yηξξ ξ η η ξ η
= =

∂ ∂ = ∂ ∂ =∑ ∑  

Where ( , )j jx y  is node coordinate, jNξ
, jNη is the partial 

derivative of shape function on ,ξ η , respectively. So: 

1 1

1 1
( , ) [ ( , ), ( , )] ( , )

S
I f x y dxdy f x y d dξ η ξ η λ ξ η ξ η

− −
= =∫ ∫ ∫    

(10)
 

With         ( , ) x y x yλ ξ η
ξ η η ξ
∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

                                  

(11)
 

Now the attention is on how to accurately calculate eqn.(10) 
by Gauss quadrature. Herein, an adaptive mesh refinement 
scheme is introduced to solve this problem. Figure 2 
illustrates the flowchart of the adaptive Gauss quadrature. In 
this technique, the initial boundary element (father element) 
is divided into four refined elements (children elements), 
each children element can further be refined again. In this 
way, the initial coarse boundary element is decomposed into 
refined small elements. In each stage of the mesh refinement, 
an approximate solution can be obtained. Generally multi-
refinement of the boundary element is needed to get a 
convergent solution at a given allowable tolerance, then the 
integration solution is returned to the initial element and the 
temporary children elements in each level of refinement are 
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cleared simultaneously, so the adaptive quadrature scheme is 
also called mesh-less scheme. In the process of adaptive 
Gauss quadrature, only a small memory of computer is 
needed, and even coarse initial boundary elements can get 
accurate solution. Take the advantage of this technique, it 
provides an effective tool to deal with large scale problems. 
So, eqn.(10) can further be expressed as: 

 
1 1

( , ) ( , )gNg N
ij i j i ji j

I H fλ ξ η ξ η
= =

= ∑ ∑
                                    

(12)

 
Where ( , )i jξ η are Gaussian point, ijH is the corresponding 

weight, 4Nr
gN = is the number of Gaussian points, Nr is the 

number of element refinement level. 

Figure 2. Flowchart of the self-adaptive Gauss 
quadrature on refined square element 

Next, we will determine the Gaussian points and 
corresponding weight of children element at each level of 
refinement by a Multi-level boundary element refinement 
algorithm. 

Multi-level boundary element refinement algorithm 

In the first level of element refinement as shown in Figure 2, 
the initial father element P1P2P3P4 is divided into four 
children elements P1P5P9P8, P5P2P6P9, P9P6P3P7andP8P9P7P4, 
five new nodes P5,P6 ,P7,P8,P9 are born. The Gaussian points 
of each element are determined by element nodes, and each 
children element node can be calculated out via node 
transform matrices 1 2 3 4T ,T ,T ,T , for example: 

,T T= =1 5 8 9 1 n0 5 2 6 9 2 n0[x ,x ,x ,x ] T X [x ,x ,x ,x ] T X

,T T= =9 6 3 7 3 n0 8 9 7 4 4 n0[x ,x ,x ,x ] T X [x ,x ,x ,x ] T X

1 0 0 0 1/ 2 1/ 2 0 0
1/ 2 1/ 2 0 0 0 1 0 0

,
1/ 4 1/ 4 1/ 4 1/ 4 0 1/ 2 1/ 2 0
1/ 2 0 0 1/ 2 1/ 4 1/ 4 1/ 4 1/ 4

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1 2T T

1/ 4 1/ 4 1/ 4 1/ 4 1/ 2 0 0 1/ 2
0 1/ 2 1/ 2 0 1/ 4 1/ 4 1/ 4 1/ 4

,
0 0 1 0 0 0 1/ 2 1/ 2
0 0 1/ 2 1/ 2 0 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

3 4T T  

Where [ , , ]T=n0 1 2 3 4X x x x ,x is initial nodes coordinate matrix, 

ix is node coordinate vector. 

Once the children elements node are known, the Gaussian 
point can be determined via Gaussian point transform 
matrices, herein one Gaussian point of each element is 
chosen, for example: 

,= =
0 1g 0 n0 g 1 n0x Q X x Q X  

3/ 4 0 1/ 4 0
0 3/ 4 0 1/ 4

[1/ 4,1/ 4,1/ 4,1/ 4],
1/ 4 0 3/ 4 0

0 1/ 4 0 3/ 4

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 1Q Q

 

Where
0gx is initial element Gaussian point,

1gx  are first level 
refined element Gaussian points. In order to determine the 
Nth-level children elements Gaussian point by MATLAB 
codes, herein four algorithm operators are defined as 
following: 
“⊗”: represents a matrix left-multiply a cell matrix; 
“⊕”: represents a matrix right-multiply a cell matrix; 
“@ ”: represents a cell matrix multiply a cell matrix; 
“ ^ ”  : represents exponential multiply of a cell matrix. 
For example: 

[ ] [ ]⊗ =1 2 3 4 1 2 3 4A B ,B ,B ,B AB ,AB ,AB ,AB
[ ] [ ]⊕ =1 2 3 4 1 2 3 4B ,B ,B ,B A B A,B A,B A,B A
[ ]@[ ] [ ]=1 2 1 2 1 1 2 1 1 2 2 2A ,A B ,B A B ,A B ,A B ,A B

^2[ ] [ ]@[ ]=1 2 3 1 2 3 1 2 3A ,A ,A A ,A ,A A ,A ,A  

So, with the above algorithm operator, the node coordinate 
and element Gaussian point of each level can be expressed as: 

,= ⊕ = ⊗n1 n0 g1 1 n0X Tr X X Q X
^2@ ,= = ⊕ = ⊗ = ⊗ ⊕n2 n1 n0 g2 1 n1 1 n0X Tr X Tr X X Q X Q Tr X

^3 ^2,= ⊕ = ⊗ ⊕n3 n0 g3 1 n0X Tr X X Q Tr X

#
^ ^( 1),N N −= ⊕ = ⊗ ⊕nN n0 gN 1 n0X Tr X X Q Tr X

                
(13) 

Where [ ], , , T
= 1 2 3 4Tr T T T T is the node transform cell 

matrix， niX , giX is the ith-level children element nodes and 
Gaussian point coordinate matrix, respectively. 
The weight of the Nth level children elements Gaussian point 
is / 4N

N fw S= , and fS is the initial square element area. In 

this way, once n0X is given, gNX can be determined and 
integration of eqn.(12) can easily be calculated out. 

 

Convergence behavior of the adaptive quadrature 
validation 

(1) Singular integral kernel function: f=1/r. 

Let Ii denote the ith level refined Gauss quadrature, Ii1 denotes 
the quadrature on the area that close to singular point, as 
shown in Figure 4, Ii2 denotes the quadrature on non-singular 
area, and Ii = Ii1+ Ii2 , the length of the first stage square is a , 
area 24S a= , so: 
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Figure 3. Integration on refined singular element. 
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i i
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2 1

12 4 26 3 3 / 2 6 / 2 12(1 )
2

N
N Na a a a I a−

−

−
< + + + + = −"             

21 31 21 41 31 1 1,1 2( ) ( ) ( )N N N NI I I I I I I I I−= + − + − + + − +"

2
2 1

6 4 23 3 / 2 3 / 2 6(1 )
2

N
N Na a a I a−

−

−
> + + + = −"

 

So as N goes to infinite, the refined Gauss quadrature 
will convergent at a constant value, see Figure 4(a).

 (2) Hyper-singular integral kernel function: f=1/r2. 

When adaptive Gauss quadrature is applied to Helmholtz 
hyper-singular integral as Visser [10] did, it is found that this 
adaptive quadrature is invalid in that: 

21 31 21 1 1,1 2( ) ( )N N N NI I I I I I I−= + − + + − +"

4
32 2 11

4 212 12 12 12( 1) 12( 1)
( , ) 2

N
Ni

Ni Ni

wI N N a
r x y −=

< + + + = − + = − +∑"

21 31 21 1 1,1 2( ) ( )N N N NI I I I I I I−= + − + + − +"

4
2 2 11

4 23 3 3( 1) 3( 1)
( , ) 2

N
N Ni

Ni Ni

wI N N a
r x y −=

> + + = − + = − +∑"

 
So as N goes to infinite, the refined Gauss quadrature on 
hyper-singular integral  will not convergent at a finite value, 
see Figure 4(b). In this way, Visser's adaptive scheme is 
inapplicable to hyper-singular integration. In fact a analytical 
solution of the Helmholtz hyper-singular integration can be 
obtained by singularity-decomposition scheme which won't 
be discussed here in detail.  

  (a) kernel function: f (r) =1/r         (b) f (r) =1/r2 

Figure 4.  Adaptive quadrature convergence behaviour of 
different kernel function. 

NUMERICAL VALIDATION 

In this section, the performance of the self-adaptive 
quadrature is investigated. A lot of publications and papers 
on boundary element method for acoustic radiation choose 
the pulsating sphere as a validation tool since the simple 
analytic solution is available in this case. Herein the radius of 
the sphere is 0.1m with uniformly pulsating velocity 
0.001m/s, and the propagation medium is water with sound 
speed 1500m/s, density 1000kg/m3. Firstly the BEM model 
of the sphere source is made, and then self-adaptive 
quadrature is used to calculate singular integral. On each 
refinement level an approximate integral solution is obtained 
and compared to the integration solution of previous level. 
The convergence behaviour of the integral solution in each 
refinement level is defined by ERRO: 

1 max( ) / ,( 1,2, , 1)i i iERRO I I I i N+= − = −…                        (14) 

When the relative error ERRO convergent at a given allowable 
error i.e. maxERRO ,usually 1e-4 which is sufficient satisfactory 
for the engineering application, no further refinement is 
necessary. By the way, the maximum refinement 
number maxN is prescribed to prevent excessive number of 
temporary elements. It is commended that maxN should be 
between 4 and 8 [10] By far the code of self-adaptive BEM 
methodology has been worked out and successfully used to 
predict underwater radiated noise. Figure 5 illustrates the 
convergence behaviour and CPU(Duo CPU,@2.33GHz,8GB 
memory) run time of the self-adaptive BEM quadrature with 
the refinement level. So to ensure both accuracy and time-
cost, optimum refinement number can be determined 
at

max 6N = . Figure 6 illustrate the numerical solution and 
analytic solution of the radiated sound pressure level at near-
field and far-field from 10Hz to 1KHz. Figure 7 demonstrates 
sound directivity at several frequencies, the results show that 
numerical solutions agree well analytic solution with 
maximum error less than 1.5dB. 
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Figure 5. Convergence behaviour and CPU run time 

     of the self-adaptive BEM quadrature. 

 
Figure 6. Sound radiation pattern of  the source 
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at different distance. 

 
Figure 7. Sound directivity at 10m from  

sphere center at 0 to 180o. 

APPLICATION TO PREDICT SUBMARINE 
UNDERWATER VIBRATION NOISE 
In this section , the BEM based on adaptive scheme and FEM 
are combined to predict submarine underwater vibration 
noise. FEM is used to calculate the vibration response of the 
submarine hull, BEM is used to predict the hull vibration 
induced underwater noise. 

FE and BE model 

To achieve a reliable prediction of engine induced 
underwater noise, a detailed 1:1 full submarine model is 
required to be taken into account. In addition, considering 
underwater radiated noise due to the excitation of engine 
source to the hull, the level of radiated sound power depends 
on the interaction of structure and water, so the fluid-
structure interaction must be also taken into account to 
simulate the effects of the structure surrounding fluid. Due to 
the fact that our major concern here is the engine unbalanced 
force induced hull vibration and underwater noise, only the 
engine vibration source is considered. Figure 8 depicts the 
major physical dimensions of the submarine, The hull is 
stiffened by 4 bulkheads, the engine weighted 230kg, and is 
attached to two sets of periodic-isolators mounted at the stern 
part of the structure. The excitation force is acted on 
periodic-isolators axysimmetrically, and the vibration is 
transmitted to the hull via periodic-isolator and finally radiate 
underwater noise. Herein all periodic-isolators are modeled 
as 3-DOF, i.e. three translational springs with properly 
defined damping coefficients, and the stiffness of the 
periodic-isolator is Kx=5E+8N/m, Ky=Kz=1e+9N/m, the 
damping ratio is 0.09, the  excited force is 100N. The main 
physical parameters of the structure are listed in Table 1. 

Figure 8. Geometry of the submarine (unit: mm) 

Table 1. Main parameters of the structure 

 Thickness 
(m) 

Young's 
modulus 
(Mpa) 

Poisson's 
ratio 

Density
(kg m-3)

Hull 7E-3 2.1E+5 0.33 7850 
Bulkhead 6E-3 2.1E+5 0.31 7850 

FEM as a good tool for study of structure vibration has been 
widely used in underwater vehicle vibration-noise prediction 
[11,12], while M. Caresta [13,14] investigated the structural 
and acoustic responses of a submarine hull under axial 
excitation by analytical method. Herein, ANSYS is used to 
research the underwater structure vibration numerically. 
Figure 9(a) illustrates the FE model of the structure and 
surrounding coupling fluid. The sphere radius of the fluid 
domain is ten times of the structure length, the fluid element 
size that contact with the structure is about 29mm, and the 
maximum size of the un-contact element is less than 625mm. 
In addition, in order to capture the vibration details, the 
closure shell elements of the submarine are refined as depicts 
in Figure 9 (b) and (c). The total number of the structure 
elements is 24121.   

 
(a) 

    
(b)                                       (c) 

Figure 9. FEM model of the structure and surround- ing 
coupling fluid. (a)structure-fluid interaction Finite element; 
(b) local refined element of the fore;(c)local refined element 

of the stern. 

The BE model is abstracted from the FE model of structure 
hull which consists of 7602 boundary elements, and the 
structure boundary vibration velocities calculated from FEM 
are used as the boundary condition of the boundary element 
model, so BEM can be used to predict underwater radiated 
noise. 

Numerical results and discussion 

Figure 10 shows the predicted results of submarine hull 
boundary and near-field sound pressure distribution at the 
plane (2m*6m in size) that 1m above the center plane of the 
structure. It is showed that the sound pressure behaves much 
stronger at the excitation location than other locations at 
different frequencies. In addition, from the sound radiation 
color map, the high sound pressure area can be easily 
detected as the arrows direct in Figure 10. So in this way, the 
location of vibration source can be roughly determined when 
near-field sound pressure is calculated and visualized, and 
this area relates to source identification which won't be 
discussed here. 
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(a) 

   
(b) 

 
(c) 

 
(d) 

Figure 10.  Structure boundary and near-field (at 1m) sound 
pressure distribution color map.(a) boundary color map at 

268Hz,(b)near-field color map at 268 Hz,(c)boundary color 
map at 312Hz,(d)near-field color map at 312Hz. 

By analyzing the color map in Figure 10, the high sound 
pressure area can be easily localized, but it cannot provide 
detailed information about the radiated sound power 
transmitted from the vibrated engine to structure hull. So in 
order to quantificationally evaluate the submarine underwater 
radiated noise, both the sound pressure and sound velocity on 
each boundary element of the submarine hull should be 

considered. In this way the radiated sound power level is 
defined as follows: 

*

1

1 [ ( ) ( ) ]
2

elem

j

N

j jR n
j

P u x v x dS
γ=

= ℜ ∑ ∫
K K

                                           (15) 

10 _10log / ( )R R R refLP P P dB=                                               (16) 

where ( )ℜ i denotes real part of the summation, * denotes 
conjugate complex, RP is the radiated sound power, RLP is 

the sound power level, 18
_ 1 10R refP W−= × is the reference 

radiated sound power in water. 

Figure 11 depicts the radiated sound power level of the 
submarine hull from 0Hz to 400Hz for different isolator 
stiffness. For the solid line, the spectrum peaks are found at 
128Hz, 214Hz, 248Hz,268Hz,312Hz and 328Hz, and the 
maximum radiated sound power level is about 100dB at 
312Hz and 328Hz. In order to control the noise level at 
312Hz and 328Hz without changing the property of the 
structure, we can further consider the impact of the rubber 
isolator stiffness to underwater radiated sound power with the 
same excitation of the engine. Herein altering the rubber 
isolator's stiffness { , , }x y zK K K K=  into / 2K , the sound 
radiation pattern of the submarine changes simultaneously, 
see the dashed line in Figure 11. Results show that, reduction 
of the rubber isolator stiffness does great benefit to the 
reduction of radiated sound power level at 66.7Hz to 400Hz, 
this can be seen from Figure 11 that when the stiffness 
changes, the maximum radiated sound power level is about 
90dB at 268Hz and 328Hz, so nearly 10dB is reduced at 
328Hz, 13dB at 312Hz, however,10dB increased at 268Hz, 
and the sound power level increases 10dB on average at 0Hz 
to 66.7Hz. So, when stiffness of the periodic-isolator changes, 
the characteristic of the sound power spectrum changes too, 
and reduction of the engine periodic-isolator's stiffness can 
effectively transfer the sound power of peak frequencies to 
band-spectrum and the vibration noise of the line spectrum is 
controlled.  
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Figure 11. Radiated sound power level of the structure for 
different rubber isolator stiffness. 

CONCLUSION 

Self-adaptive BEM quadrature can well improve the 
singularity of HIE and reduce the computation effort. The 
refined temporary children elements just played a 
"springboard" role in the singular integral calculation, it did 
no contribution to the total number of boundary elements. 
When  the adaptive quadrature scheme is applied to singular 
integration, the solution convergence behaves well, and when 
applied to hyper-singular integration, the solution 
convergence is poor. So, in order to accurately predict near-



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

ICA 2010 7 

field sound pressure, the adaptive scheme should be carefully 
used. Then BEM coupled with FEM were applied to predict 
underwater vehicle vibration-noise considering fluid-
structure interaction effects. By visualization the near-field 
sound pressure distribution, high sound pressure area was 
localized. Finally, the underwater radiated sound power was 
calculated and the peak frequencies were identified. 
Reduction of the engine periodic-isolator's stiffness can 
effectively transfer the sound power of peak frequencies to 
band-spectrum and the vibration noise of the line spectrum is 
controlled. 
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