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ABSTRACT

The spatial resolution of a beamformer based on a planar microphone array in a measurement plane parallel to the
array can be approximated by a two-dimensional convolution of the actual distribution of incoherent sources and
the beamformer’s response to a point source. Several methods are available for deconvolving the resulting blurred
picture and thus improving the resulting resolution. This investigation is concerned with a similar deconvolution for the
three-dimensional case.

INTRODUCTION

Near field beamforming with a planar phased array of micro-
phones is an attractive technique for locating sound sources at
intermediate distances from the array [1]. However, the method
has some inherent limitations, including spatial resolution con-
straints and effects of sidelobes. On certain conditions it is
possible to ‘clean’ the beamformer map and thus improve the
spatial resolution and suppress sidelobe effects. For example,
when some requirements are met it is possible to improve the
beamformer response (‘clean the dirty map’) using deconvolu-
tion algorithms. Moreover, this deconvolution can be carried
out using spectral methods, which is computationally advan-
tageous. However, the use of deconvolution for improving the
beamformer response implies that its response to a point source
depends only on the distance between the focus point of the
beamformer and the position of the point source. This property
is called ‘shift invariance’. This is usually only approximately
the case. However, there are reasons to believe that improved
shift invariance can be obtained using a transformed set of
coordinates. The purpose of this paper is to examine the matter.

BEAMFORMING AND NEAR FIELD SOURCE
IMAGING

Beamforming involves sampling the sound pressure with spa-
tially distributed transducers, and post-processing the data by
a digital procedure that scans the scene of interest for sound
sources. In conventional delay-and-sum beamforming this steer-
ing is achieved by applying appropriate delays to the pressure
signals from the transducers followed by a summation of all the
delayed signals. This procedure results in the coherent addition
of signals coming from the direction of focus, maximising the
energy in the beamformer output, whereas signals from other
directions will be attenuated, leading to a specific beamformer
directivity pattern [2].

If the sound source is sufficiently far from the array the resulting
sound field sampled by the array may be regarded as a plane
wave. In this case the purpose of the beamforming is to detect
the direction of the propagating wave; see Figure 1, which
illustrates a planar microphone array exposed to an incident
plane wave.

The individual delay τm applied to the signal recorded by the
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Figure 1: Far field beamforming for detecting the direction of a
distant sound source.

m’th transducer for focusing the beam towards the direction
defined by the unit vector κ̂ is related to the position of the
transducer~rm and the speed of sound c (here assumed to be
constant) [3],

τm =
κ̂ ·~rm

c
. (1)

Expressed in the frequency domain the beamformer output
becomes

B(κ̂,ω) =
1
M

M

∑
m=1

wmPm(ω)e− jωτm

=
1
M

M

∑
m=1

wmPm(ω)e j~k·~rm ,

(2)

where wm is a weighting factor applied to each individual mi-
crophone signal Pm(ω), and~k is the wavenumber vector that

ICA 2010 1



23–27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010

corresponds to the direction of propagation of the expected
plane wave (see Figure 1). With an incident plane wave prop-
agating in a direction given by the wavenumber vector~k0 the
pressure signals are

Pm(ω) = P0 · e− j~k0·~rm , (3)

and it can now be seen that the phases cancel out and the beam-
former output assumes a maximum value if it is steered in the
right direction. By steering the beam successively in all possible
directions, the directions of possible point sources are revealed.
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Figure 2: Near field beamforming for mapping sound source
locations.

If a sound source is expected at an intermediate distance from
the array the beamformer should be focused at exact positions
in space rather than in directions, and the curvature of the
propagating spherical waves has to be taken into account; see
Figure 2, which illustrates how the wavefronts arrive at the
various microphone positions. In this case the individual time
delays required for aligning the signals are given by

τm =
|~r|− |~r−~rm|

c
. (4)

Expressed in the frequency domain the array response becomes

B(~r,ω) =
1
M

M

∑
m=1

wmPm(~r,ω)e− jk(|~r|−|~r−~rm|), (5)

where Pm(~r,ω) is the sound pressure at the position of the m’th
microphone,

Pm(~r,ω) = P0 ·
e− jk|~r−~rm|

|~r−~rm|
. (6)

In a stationary sound field the mean square output of the beam-
former can be expressed in terms of a sum of cross-spectra [3],

|B(~r,ω)|2 = 1
M2

M

∑
m=1

w2
mCmm

+
1

M2

M

∑
m6=n

wmwnCmne− jk(|~r−~rm|−|~r−~rn|)),

(7)

where Cmn is the cross-spectral matrix given by

Cmn = P∗m(ω) ·Pn(ω). (8)

The beamformer response can be improved if an amplitude
correction that takes account of the attenuation of the spherical
wave sound field at the various transducers is incorporated. This
problem has been addressed by Christensen and Hald [4]; their
solution is based on minimising an error function between the
measured and the modelled cross-spectra Cmn with respect to
amplitudes. The resulting optimal imaging function is

I2(~r,ω) =
1
M

∣∣∣∑M
m,n=1 Cmn(ω)v(~r−~rm)v∗(~r−~rn)

∣∣∣√
∑

M
m,n=1 |v(~r−~rm)|2 |v(~r−~rn)|2

, (9)

where v is the steering vector, defined by

v(~r) =
e− jk(|~r|)

|~r|
. (10)

Excluding the autospectra in the diagonal of the matrix in cross-
spectral beamforming tends to reduce the sidelobe level [4]. In
this case the imaging function takes the form

J2(~r,ω) =
1√

M(M−1)

∣∣∣∑M
m6=n Cmn(ω)v(~r−~rm)v∗(~r−~rn)

∣∣∣√
∑

M
m6=n |v(~r−~rm)|2 |v(~r−~rn)|2

.

(11)

The results presented in what follows are based on this expres-
sion. Finally it should be mentioned that random non-redundant
array geometries tend to reduce aliasing effects due to periodic-
ities in the array pattern [5].

CONVOLUTIONAL FORMULATION OF THE
PHASED ARRAY RESPONSE

In order to obtain an image of the sound source distribution
within the scene of interest, a beamforming procedure is imple-
mented that involves scanning the observation space by steering
successively at a grid of equidistant points. In principle this
maps the relative contributions of the sound sources that are
present in the scanned region. The mean square response of the
beamformer to a point source with unit strength placed at an
arbitrary position in the observation grid is called the ‘point
spread function’, p. This is the squared spatial impulse response
of the beamformer and reveals its directivity characteristics and
resolution capabilities.

The presence of uncorrelated sources at arbitrary positions in
the observation grid,~r′, gives rise to a mean square beamformer
response that can be written as

|b(~r)|2 = ∑
~r′

q(~r′) · p(~r|~r′), (12)

where q is the strength of the sources and~r and~r′ are vectors
that denote the current focus point and the position of the point
source in the grid, respectively.

The point spread function is shift invariant if it depends only
on the distance between the current observation point and the
source position and not on the individual positions per se. This
is generally the case only when the source region is small com-
pared with the distance between the array and the source, and
this is the case only if the beamformer map is limited to a rel-
atively small 3D region. In this case the point spread function
takes the form:

p(~r|~r′) = p(~r−~r′), (13)

and eq. (12) can now be expressed as a convolution,

|b(~r)|2 = ∑
~r′

q(~r′) · p(~r−~r′) = q∗ p, (14)

which in turn makes it possible to calculate the beamformer out-
put in the wavenumber domain making use of the computational
advantage of a discrete spatial Fourier transform,

|b(~r)|2 = F−1 [F [q] ·F [p]] , (15)

where F denotes a three-dimensional Fourier transform and
F−1 denotes the corresponding inverse transform. However, it
should be emphasised that the validity of eq. (15) is restricted to
the case where the sources are incoherent and the point spread
function is shift invariant.
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DECONVOLUTION ALGORITHMS AND
SPECTRAL METHODS

In the ideal case the point spread function would be a delta func-
tion, and the beamformer output would reveal the location of
sources within the region of observation directly. Unfortunately
this is never the case since the array geometry imposes certain
resolution limitations and gives rise to sidelobes. Hence, there
is a need of improving the map by post-processing.

Deconvolution techniques are widely used in many fields of
imaging for ‘cleaning’ the obtained maps. An investigation on
the application of various iterative deconvolution algorithms in
aeroacoustic beamforming measurements has been carried out
by Ehrenfried and Koop [6]. Several algorithms were compared
in terms of computational load, robustness and limitations, us-
ing synthesised data. The tested algorithms were non-negative
least-squares solvers aiming to converge towards the actual
source distribution (in two dimensions) through an iterative pro-
cedure. The investigation included the classical deconvolution
algorithms that involve matrix operations to solve eq. (12) under
the constraint of non-negative source strengths. The same algo-
rithms were also modified to incorporate spectral procedures
providing the possibility of using a discrete spatial Fourier trans-
form to perform the operations in the wavenumber domain. This
tends to reduce the computational effort dramatically compared
with the classical methods resulting in a significantly increased
calculation speed. However, the Fourier based methods require
by definition a shift invariant point spread function, and it is dif-
ficult to meet such requirements in typical setups in aeroacoustic
measurements. One possibility is simply to ignore the variations
of the point spread function across the observation grid, which
in this case must be restricted to a very limited region. Another
solution, proposed by Ehrenfried and Koop [6], involves nesting
the Fourier based algorithm into another iterative procedure that
accounts for the variations of the point spread function as the
point source is shifted across the observation grid. This method
is expected to converge to an accurate solution of the source
distribution. However, the nesting of iterative procedures tends
to slow down the process significantly, and the computational
effort becomes comparable to the one of the classical methods.

The so-called DAMAS2 algorithm suggested by Dougherty [7]
(which is an extension of the original DAMAS deconvolution
algorithm introduced by Brooks and Humpreys [8]) seems to be
a promising compromise between accuracy and computational
efficiency considering the fact that the task involves scanning a
three-dimensional region. The DAMAS2 algorithm gives good
results if the assumption of a shift invariant point spread func-
tion is met, and it provides the possibility of regularising the
process by incorporating a Gaussian spatial low-pass filter to
suppress high wavenumber noise, such as noise leaking into
the reconstructed map due to transducer phase mismatch or the
presence of strong point sources outside the region of interest.

The DAMAS2 algorithm comprises the following steps:

• The point spread function is computed under the assump-
tion of shift invariance based on eq. (13).

• The sum of the point spread function at positions across
the observation grid is stored in a constant,

α = ∑
~r

p(~r−~r′). (16)

• A Gaussian regularisation filter is computed,

ψ(~k) = exp

− ln(2)

∣∣∣~k∣∣∣2
k2

c

 , (17)

where kc is the spatial cutoff frequency.

• The iterative procedure starts. Initialisation of the source
strengths with zeros is assumed. In each iteration cycle
(i) the beamformer output is estimated through a spectral
procedure in the wavenumber domain based on the point
spread function and the assumed source distribution at
the same cycle,

b̄(~r)(i) = F−1
[
F
[
q(~r)(i)

]
·F [p(~r)] ·ψ(~k)

]
. (18)

• An update of the estimated source distribution is con-
structed subject to the constraint of non-negative strength
values,

q(~r)(i+1) = max

(
q(~r)(i)+

b(~r)− b̄(~r)(i)

α
,0

)
. (19)

• The last two steps are repeated until the process con-
verges by minimisation of the residuals of the actual
and estimated beamformer response in eq. (19). It is
apparent that each iteration cycle necessitates the cal-
culation of only one Fourier transform and one inverse
transform since the point spread function is regarded as
shift invariant and can be transformed one single time.

The sidelobe levels are gradually minimised by the iterative
procedure described above, eventually resulting in a ‘clean’
beamforming map where the effects of ghost sources are re-
duced and the real source distribution is reconstructed more
accurately.

COORDINATE TRANSFORMATION

The potentially improved beamforming maps obtained after
application of iterative deconvolution algorithms combined with
the computational advantages of the fast spectral procedures
constitute obvious solutions for accurate source location in
three-dimensional acoustic sound source imaging. However, by
definition such procedures require the point spread function
to be shift invariant. Aeroacoustic measurements for locating
sound sources within a predefined observation region often
involve configurations where spatially extended sources are in
the near field region of the microphone array. In such cases
the point spread function depends on the actual position of
the source in the observation grid, and the prerequisite for the
convolutional formulation of the beamformer output is only
approximately fulfilled.

In order to obtain a more convolutional form of the beamformer
response, an unconventional set of coordinates for defining the
focal points on the observation grid is introduced. The new
grid is determined by equidistant points in the new coordinate
system instead of in the Cartesian one and is defined so as to
circumscribe the area of interest. This transformation of co-
ordinates aims at making the point spread function retain its
characteristics irrespectively of the location of the correspond-
ing point source in the observation grid. Such techniques are a
common practice in underwater acoustic vision performed with
digital beamforming [9], [10], and a similar transformation for
near field aeroacoustic measurements has been suggested by
Dougherty [7].

To perform three-dimensional beamforming two angles, φ and
θ , are required to define the steering directions as shown in
Figure 3. Note that these angles differ from the conventional
azimuth and polar (or elevation) angle.

The steering directions are equally spaced in the sines of the
two angles, and the vector that determines the position of the
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Figure 3: Steering a beamformer in 3D space.

current focal point in the observation grid is defined through
the set of coordinates

(x,y,z) = r ·
(

sinφ ,sinθ ,

√
cos2 φ − sin2

θ

)
= r ·

(
u,v,

√
1−u2− v2

)
,

(20)

where the last substitution is based on the transformation

u = sinφ =
x
r

, v = sinθ =
y
r

, w =
zmin

r
, r = |~r| , (21)

in which zmin is the minimum axial distance within the region
of validity, defined in ref. [11]. Obviously the variables u and
v range between -1 and 1, whereas the variable w takes non-
negative values up to unity. The reason for introducing the
variable w will become apparent in the following.

The transition of the point spread function to a convolutional
formulation when it is calculated through the new set of coordi-
nates becomes more intuitively clear if one inspects the delays
applied to the individual transducers of the array in order to
steer the beam to a specific direction.

Assuming that the microphone array is lying on the ground and
the origin of the coordinate system coincides with the centre of
the array, the position of the m’th transducer is defined by the
vector ~rm = (xm,ym,0). The difference in travel time between a
transducer placed at ~rm and another placed at the centre of the
array at the position ~r0 = (0,0,0) is (|~r′− ~rm|− |~r′|)/c when
the beam is focused at a point in the grid at~r′ = (x′,y′,z′) that
coincides with the correct point source location, and (|~r− ~rm|−
|~r|)/c when the beam is focused towards a mismatched grid
point (with no source) at~r = (x,y,z). It follows that the point
spread function depends on the quantity

c · τ = (|~r− ~rm|− |~r|)−
(∣∣~r′− ~rm

∣∣− ∣∣~r′∣∣) . (22)

By replacing the Cartesian coordinates that define the position
vectors according to the transformation described by eq. (20),
eq. (22) can be written as

c · τ =−xm(u−u′)− ym(v− v′)

+
1
2
(x2

m + y2
m)

(
1
r
− 1

r′

)
.

(23)

Equation (23) is based on a second order binomial expansion of
the square root. However, this approximation holds only under

certain assumptions that define the region of validity [11]. The
near field beam pattern is limited within an angular region of no
more than 18◦ off the z-axis and in a maximum range defined
by the frequency and the array dimensions. These limitations
reduce the flexibility of the method. The last term in eq. (23)
accounts for effects of the curvature of the spherical waves and
defines the range resolution. This is generally improved with
larger array apertures, and the maximum and minimum value of
the range vary with the aperture [2]. By introducing the variable
w instead of the range term in eq. (23) the resulting expression
attains the shift invariant form,

c · τ =−xm(u−u′)− ym(v− v′)+
1
2

x2
m + y2

m
zmin

(w−w′). (24)

The last expression has the convolutional form of the point
spread function as defined in eq. (13) within an appropriate
region of validity.

SIMULATION RESULTS

In order to examine the possibility of applying deconvolution
methods to improve the resolution in delay-and-sum beam-
forming measurements on wind turbines a simulation model
has been implemented based on the theory presented in the
foregoing. The configuration is a scaled version of the actual
one used for wind turbine measurements and is also examined
experimentally in the controlled environment of an anechoic
chamber.

The configuration, shown in Figure 4, consists of a planar aper-
ture with a diameter of 1 m with sparsely distributed micro-
phones in a pseudorandom pattern and two pairs of uncorrelated
point sources.

x
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zmin = 1.356R

zmax =
πR2
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array
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observation
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Figure 4: Test configuration with a planar sparse array. Four
omnidirectional sources of equal strength are placed within
the observation grid in 3D space. The region of validity is the
space where near field beamforming can be performed using
the transformed set of variables.
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The relative microphone array position and extent combined
with the frequency range of concern set the limits for near field
beamforming in the transformed set of coordinates [11]. In what
follows a frequency of 6000 Hz is considered, corresponding
to a fairly large near field region with the given array aperture.
The idea of the two pairs of point sources is to examine both the
lateral and the range resolution of the array. The origin of the
coordinate system is identified at the geometrical centre of the
array. The two pairs of sources are positioned at two different
range distances, and the sources of each pair are symmetrically
spaced from the origin of the coordinate system in the x-axis
and shifted towards one side of the y-axis. This configuration
has been chosen in order to comply with an actual wind turbine
measurement setup. In the real measurements the microphone
array will be placed on the ground at a small distance from the
base of the installation, and the sound sources are expected to
appear as uncorrelated aeroacoustic noise along the leading and
trailing edge of the wing.

All sources have the same strength. Figure 5 shows the distribu-
tion of the four sources in the conventional Cartesian coordinate
system (Figure 5a) and in the transformed one (Figure 5b). As
the coordinate transformation described by eq. (21) implies, the
more distant the location of the sources is in the Cartesian co-
ordinate system, the closer to the origin of the uvw-coordinate
system they will appear. Thus even though all sources lie in
the same xz-plane they will appear in different uw-planes. Simi-
larly, the source pairs S1, S2 and S3, S4 that are set to the same
yz-planes will appear in different vw-planes in the transformed
coordinate system.
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Figure 5: Source distribution in Cartesian coordinates (top) and
in the uvw-coordinates.

The translational characteristics of the point spread function
both in the conventional and the transformed set of coordinates
are presented in Figures 6 and 7. Figure 6 refers to a plane
parallel to the microphone array while Figure 7 refers to a plane
perpendicular to the microphone array.

Comparison of the beamformer’s response to different point
source locations in the transformed coordinates reveals that
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Figure 6: Comparison of the point spread function in the two
different coordinate systems in a plane parallel to the array for
a centred point source position (top) and for a random point
source position (bottom).

the point spread function retains its form irrespectively of
the position of the point source in the observation grid (Fig-
ures 6b, 6d, 7b, 7d). Conversely, when beamforming is per-
formed according to a grid defined in Cartesian coordinates the
point spread function alters its characteristics: the main lobe be-
comes wider due to the transition of the source to more distant
positions and tilted in the perpendicular plane due to transition
of the source to off-axis positions (Figures 6a, 6c, 7a, 7c). Con-
sequently, the point spread function has a more shift invariant
form in the new set of coordinates.

The 3 dB width of the main lobe of the point spread function
dictates the limitation in the minimum spatial separation of
sources that can be resolved through the beamforming proce-
dure according to the Rayleigh criterion [3]; see Figure 8. The
shift invariance of the point spread function implies that the
resolution is constant in the uvw-domain irrespectively of the
source position. However, the inverse transform to the Cartesian
system of the processed data will result in poorer resolution as
the range of the source increases.

First, the beamformer output is calculated by applying the clas-
sical delay-and-sum procedure in an equidistantly spaced obser-
vation grid in the Cartesian coordinate system. Figure 9 shows
the results in three planes, one perpendicular to the array and
two parallel to the array, where the sources are expected. It
is apparent that the further from the array the source location,
the poorer the resolution. In addition, the resulting map is con-
taminated with sidelobe effects that appear as weaker ‘ghost’
sources.

The corresponding beamformer output resulting from scanning
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Figure 7: Comparison of the point spread function in the two
different coordinate systems in a plane perpendicular to the
array for a centred point source position (top) and for a random
point source position (bottom).
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Figure 8: Point spread function in the uvw-coordinate system
in a plane perpendicular to the array for a centred point source
position as a function of u and w.

the observation grid through the transformed coordinates by a
delay-and-sum procedure and then inversely transforming the
results to the Cartesian system is presented in Figure 10. The in-
verse transform is necessary in order to ‘translate’ the obtained
data from an equidistantly spaced grid in the uvw-domain to
an equidistantly spaced grid in the xyz-domain and is based on
a linear interpolation. Comparison of the results demonstrates
significantly improved resolution when the beamforming proce-
dure is implemented in the uvw-coordinate system.

Post-processing the beamforming data by application of the

x [m]

z
[m

]

−2 0 2

2

4

6

8

(a) y =−1 m

x [m]

y
[m

]

−2 0 2
−2

−1.5

−1

−0.5

0

(b) z = 2 m

x [m]

y
[m

]

−2 0 2
−2

−1.5

−1

−0.5

0

(c) z = 6 m

−20

−16

−12

−8

−4

0 dB

Figure 9: Beamformer output using the delay-and-sum proce-
dure in the Cartesian coordinate system.
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Figure 10: Beamformer output by applying the delay-and-sum
procedure in the transformed uvw-coordinate system.

DAMAS2 deconvolution algorithm results into the reconstructed
source distribution depicted in Figure 11. It can be seen that
the sidelobes have vanished completely from the reconstructed
source map. In addition the resolution has been improved, re-
sulting in a more accurate identification of the source positions
and their relative strength.
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Figure 11: Reconstructed source distribution and relative
strengths after applying the spatial deconvolution algorithm.

EXPERIMENTAL RESULTS

In order to validate the simulation results presented in the fore-
going, some experiments have been carried out in an anechoic
room with a volume of around 1000 m3. The configuration de-
picted in Figure 4 was established, and the sound pressure was
recorded from 60 microphones sparsely distributed on an array
with a diameter of 1 m. The cross-spectral matrix was estimated
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from records of 10 seconds’ duration. Next, the delay-and-sum
beamforming procedure was applied to scan electronically the
scene of interest. In the same way as in the simulation study,
the beamformer output was determined by scanning across an
equidistantly spaced grid in Cartesian coordinates as well as
across an equidistantly spaced grid in the transformed coor-
dinate system. Finally, the reconstructed source distribution
resulting from ‘cleaning’ the beamforming map with a decon-
volution procedure was calculated. The results are depicted in
Figures 12, 13 and 14.
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Figure 12: Beamformer output based on experimental data de-
termined using the delay-and-sum procedure in the Cartesian
coordinate system.
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Figure 13: Beamformer output based on experimental data de-
termined using the delay-and-sum procedure in the transformed
uvw-coordinate system.
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Figure 14: Reconstructed source distribution and relative
strengths after applying the spatial deconvolution algorithm
to the experimental data.

In agreement with the results of the simulation study, the beam-
former map is already improved in terms of resolution when the
steering points are defined in the transformed uvw-coordinate
system. Moreover, the deconvolution procedure results in a
‘clean’ imaging map, free of sidelobe effects. A slight mismatch
of the source locations between the simulated and the experi-
mental case is probably due to the difficulties in fine tuning the
source positions in the experimental setup with the provided
equipment. Furthermore, the fact that the source strengths are
not fully reconstructed is attributed to the rather short time
records used in the measurements. Nevertheless, the agreement
between the simulation study and the experimental results vali-
date the applicability of the method.

CONCLUSIONS

An investigation of the possibility of improving the resolution
of 3D beamforming based on a planar microphone array by de-
convolution methods has been carried out. The computational
advantage of incorporating spectral procedures to the deconvo-
lution requires a shift invariant point spread function. However,
in near field beamforming, the beamformer’s response to a point
source depends on the individual position of the source within
the observation grid. A more shift invariant form of the point
spread function is achieved by introducing an unconventional
set of coordinates for defining the focal points in the obser-
vation grid. The validity of this approach has been examined
by a simulation study as well as by experimental results. Both
simulations and experimental results demonstrate a significant
improvement of the beamformer output in terms of enhanced
resolution and reduced sidelobe contamination.
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