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ABSTRACT 

This paper proposes a family of new robust adaptive filtering algorithms for stereophonic acoustic echo cancellation 
in impulsive noise environment. The new algorithms employ sequential partial update scheme to reduce computa-
tional complexity, which is desirable in long echo path case. On the other hand, by employing robust M-estimate 
technique, the new algorithms become more robust to impulsive noises compared to their conventional least square-
based counterparts. These two advantages enable the proposed algorithms to be good alternatives for stereophonic 
echo cancellation. Experiments are also conducted to verify their efficiency. 

INTRODUCTION 

In recent years, with the rapid development of digital 
communication, signal processing and VLSI tech-
niques, there is an increasing demand for both the 
methods and quality of speech communication. Among 
the prevailing ones, hands-free communication systems, 
such as vedio/tele-conferencing, personal mobile phone, 
and home entertainment devices are finding numerous 
applications in this trend. Stereophonic speech com-
munication system plays an important part in these 
systems. It consists of two microphones and two 
speakers, which enables the user to acquire an “immer-
sive experience” [1] with higher sound reality and finer 
source localization ability. To enhance the speech 
communication quality, stereophonic acoustic echo 
cancellation (SAEC) (depicted in Fig. 1) [2] is one of 
the main tasks. Its kernel, the echo canceller, is known 
as a two channel adaptive filtering algorithm and basi-
cally much more difficult than the monophonic case [2]. 
This is because the near-end two speaker signals origi-
nate from a common source in the far-end room, which 
introduces a strong correlation between the transmitted 
stereo signals and thus prevents algorithm’s normal 
convergence. In literature, a lot of efforts have been 
made to decorrelate the two channel input signals so as 
to mitigate the convergence problem [3]-[6]. In fact, 
there are a few other problems that are also very crucial 
to SAEC problem. In this paper, we focus on another 
important aspect of SAEC research which is less com-
prehensively explored: to derive a family of partial 
update robust algorithms with both computational sim-
plicity and robustness to impulsive noises [7]. Accord-
ingly, here we will employ two key techniques: (1) 

sequential partial update (PU) scheme, which is stable 
and easy to implement; (2) robust statistics technique, 
which fundamentally solves the fat tail signal distribu-
tion problem [8] and is proved effective in combating 
impulsive noises in a wide range of applications.  

In acoustic echo cancellation, higher order adaptive 
filters are usually required to model the acoustic paths 
with long impulse responses. For SAEC, this computa-
tional load is especially heavy in considering of the 
two paths to be estimated. Among the various com-
plexity reduction schemes, PU [9]–[14] is very effi-
cient. It only updates a portion of the filter coefficients 
at each iteration. Due to its simplicity and stability, PU 
is very attractive for implementation in hardware, 
VLSI, and digital signal processors. There are gener-
ally two categories of PU adaptive filtering algorithms. 
The first one updates the coefficients using certain data-
dependent selection criteria, such as [9]–[11]. They 
usually converge faster than those using fixed updating 
strategies, but with increased computational complexity 
due to coefficient selection. Moreover, it may also en-
counter convergence problem for non-stationary signals 
due to data-dependent updating [14]. On the other hand, 
the second category of algorithms uses pre-determined 
updating schemes to update the filter coefficients. Rep-
resentative algorithm is the sequential LMS (S-LMS) 
algorithm [12], [13] which partitions the coefficients 
into non-overlapping groups and updates them sequen-
tially at each iteration. These algorithms are simpler to 
implement and are found to be more stable for certain 
non-stationary signals than the first class of algorithms 
[14]. Recently, another variant of the S-LMS algorithm 
was developed: the stochastic partial update LMS 
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(SPU-LMS) algorithm [14], which randomly schedules 
coefficient updating, has a further improved stability in 
face of nonstationary input signal. Thanks to the struc-
tural similarity of these sequential PU algorithms, in 
this paper, we can work within the same framework to 
apply them into SAEC problem. Without losing gener-
ality, only their normalized versions are considered. 

Nextly, as for the robustness issue, the above men-
tioned conventional sequential PU algorithms are not 
immune to impulsive noises which are widely encoun-
tered in speech communication systems. This is be-
causes they belong to the LMS algorithm family which 
is derived from Gaussian-distributed signal assumption. 
Their performances will deteriarite significantly in im-
pulsive noise environment (non-Gaussian). To improve 
their robustness, we introduce the robust M-estimate 
technique [8] to develop a new set of sequential PU 
algorithms for SAEC which are more robust in combat-
ing impulsive noises than their LMS counterpart. 

The rest of this paper is organized as follows: in sec-
tion 2, the SAEC problem and the sequential PU algo-
rithms are introduced. In section 3, the proposed robust 
algorithms are derived. Simulation results are given in 
section 4 and conclusions are drawn in section 5. 

Sequential PU NLMS algorithms 
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Figure 1. Stereophonic Adaptive Echo Cancellation (SAEC) 

Fig. 1 depicts the SAEC problem. For simplicity, only 
one acoustic echo path is considered here. For tele-
communications between the far-end and near-end 
rooms, the voice of the speaker in the far-end room 
passes through two acoustic paths , , and 
is then picked up by two microphones. 
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represents the measurement noise plus possible inter-
ference. The stereo signals  transmitted to the 
near-end room are thus mutually correlated.  are 
convolved with two echo paths W ,  with order 
L and then picked up by the microphone as the echo 

. In the echo canceller, two adaptive filters 
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 with order L are employed to model  and 
generate an echo estimate. 

2,1=i
)(noη  represents the micro-

phone measurement noise. To decorrelate the input 
signals , various schemes were proposed and 
among them the nonlinearity method [3] has gained 
wide application. Its main principle is to add a half-

wave rectified signal to the original signal : 
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where α  determines the amount of added distortion. 
Various practices suggest that satisfactory decorrela-
tion can be achieved with no significant sound distor-
tion when  [3].  )5.0,3.0(∈α

The two channel normalized least mean square 
(TCNLMS) algorithm with above input decorrelation 
scheme can be summarized as follows: 
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where μ  is the step size parameter and ε  is a small 
positive value used to avoid division by zero. 

Integrating sequential PU schemes in [12]-[14] into 
(1)–(7) yields a family of two channel sequential PU 
NLMS algorithms which we collectively call 
TCSNLMS algorithms: 
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where ; )](),....,([diag)( 1 nsnsn L=XS }1,0{∈nsi , 
L,…i ,2,1= , is a selection matrix. In the S-LMS algo-

rithms,  is divided into C non-overlapping 
groups which are updated sequentially. The elements 
of  are thus 

)(nW

)n CLP /(XS =  equally spaced or con-
secutive 1’s (and 0’s elsewhere) and they are shifted 
cyclically as time propagates. Consequently, only P  
coefficients are updated per iteration. At time instant n, 
when  is equal to one, the corresponding element 

 in  will be updated. S  for the 
TCSNLMS, the TCSBNLMS (two channel sequential 
block NLMS), and  the TCSPUNLMS algorithms are 
summarized in Tables 1.  
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Table 1. Structure of the TCSNLMS algorithms 
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The advantage of the TCSNLMS algorithms is their 
flexibility in compromising the convergence speed and 
computational complexity. In some situations, desired 
convergence speed can be achieved with just a mild 
computation load.  

Given its efficiency and easiness for implementation, 
the TCSNLMS algorithms for SAEC has one out-
standing disadvantage: since it is based on least square 
(LS) criteria like the conventional LMS algorithm, its 
performance will degrade considerably when the de-
sired and/or input signals are corrupted by impulsive 
noise [7] which is commonly encountered in speech 
communication systems (i. e. in Fig. 1 )(noη  could 
mix with impulsive noise). Many techniques have been 
proposed to combat the adverse effects of impulsive 
noise on adaptive filters. Among them, the approaches 
based on robust statistics [8] have been proved very 
effective. A typical example is the least mean M-
estimate (LMM) [15] algorithm. It is derived from ro-
bust M-estimate [8] and can be viewed as the robust 
counterpart of the LMS algorithm. Its improved ro-
bustness in impulsive noise environment has been 
thoroughly discussed in [15]. Here, we apply this tech-
nique to the TCSNLMS algorithms to obtain new algo-
rithms with improved robustness to impulsive noise. In 
the next section, we shall introduce the M-estimate 
concept and then derive the new algorithms. 

Sequential PU NLMM algorithms 
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Figure 2. Modified Huber M-estimation 

By minimizing the modified Huber (MH) M-
estimate function ρJ ))](([ neE ρ=

ψ

 [8] instead of the 
conventional least mean square criterion , 
we get the score function  and 

)]([ 2
LMS neEJ =

ee ∂∂ /)(ρe =)(
eeeq /)()( ψ=  as illustrated in Fig. 2.  can 

thus be incorporated into various algorithms to gener-
ate the corresponding robust algorithms, e. g. the least 
mean M-estimate (LMM) algorithm [15] with respect 
to the LMS algorithm:  
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Obviously, when )(noη  is impulsive,  will be-
come larger than the threshold 

)(ne
ξ , and )(eψ  will be-

come zero and prevent the weight vector from updating. 
Thus the resultant algorithms can effectively reduce the 
adverse effect of large estimation error due to impul-
sive noise. The threshold parameter ξ  should be esti-
mated adaptively using the following method [15]: 
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where )(med ⋅  is the median operator, 13.21 =c , 
10 <<< σλ , 95 ≤≤ wN . The computational cost for 

performing the median filtering (additional cost com-
pared to conventional algorithms) is O  
operations per iteration which is relatively trivial. 

)( log ww NN

We now analyze eq. (10)–(12) and discuss the opti-
mal selection of . Eq. (11) is in fact a combination of 
a moving median smoother and an exponential estima-
tor. According to order statistics theory [16], in order to 
get rid of the impulsive interference in ，a median 
filtering operation  with window length 

1c

)(ne
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2

12 +′N  can be applied (It equals to an order statistics 
operation with order 12 +′N ，where is even and N ′

12 += ′N
wN ). Compared to the original signal, the fil-

tered signal has a slight variation in its probability den-
sity function (PDF) [16, 17]. Therefore, we can assume 
that eq. (11) can obtain an approximately accurate es-
timate of the power of the error signal which is free 
from contaminating impulsive noise. Moreover, this 
estimate is very close to the result of Tukey in [18] 
obtained through robust estimation using median filter 
on mass data. More specifically, from [19] we know for 
white input signal, the output of moving median filter 
has the following asymptotic mean value and variance, 
respectively: 
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where  is the median value of the PDF, and  
represents the value of the pdf at that point. From (13) 
it can be found that for the moving median filtering 
smoother, its estimate of the mean value of the signal 
PDF is consistent and unbiased (as lim ). 
(13) also suggests the estimate is quite robust. This is 
because  is only proportional to but not 
to the variance of the signal it processes. 
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Since impulsive noise-free error signal is Gaussian-
distributed with zero mean and variance ，we 
can assume  satisfies Chi-square distribution 
with dimension 
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 (its signal power asymptotically 
converges to ). Hence, taking mathematical ex-
pectation on both sides of (11) yields: 
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where  is the median value of the signal with Chi-
square distritution，and its prototype signal satisfies 
N～(0,1) Gaussian distribution. Accordingly, employ-
ing the median value computation equation for Chi-
square distributed signal one can get 

5.0t



23-27 August 2010, Sydney, Australia Proceedings of 20th International Congress on Acoustics, ICA 2010 

4 ICA 2010 

4705.0| 1729
8

27
4

3
2

5.0 2 =−+−= =kkkkt  

and thus 
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The above derived value of  differs from 1c
2

1
5 )]1(483.1[ −+
wN  in [15]. In the following experiment 

we can see  is more accurate whereas the 
value in [15] will cause overestimate, which may 
wrongly ignore the impulsive interference with small 
amplitude. 
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TCSNLMM algorithms 

Incorporating the techniques derived above into the 
TCSNLMS algorithms (8), we can get the new 
TCSNLMM algorithms as follows 
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together with (1)-(6). Correspondingly, this family in-
cludes three members: the TCSNLMM, the 
TCSBNLMM, and the TCSPUNLMM algorithms. 

Simulation results 
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Figure 3.  Acoustic and echo paths impulse responses (a) , 
(b) , (c) , (d)  
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We now verify the efficiency of the proposed 
TCSNLMM algorithms using computer simulations of 
SAEC problem. The input signal  is modeled as a 
speech signal using a first order AR process with the 
coefficient . The four acoustic and echo paths 
in both the near-end and far-end rooms , , , 
and  are the models given in the ITU-T recommen-
dation G.168 [20] whose impulse responses all have 
128 coefficients. They are respectively illustrated in 
Fig. 3 (a)-(d). The step sizes of the TCSNLMS and 
TCSNLMM algorithms are all set to be 0.5. All curves 
are the averaged results of 200 independent runs. 

)(nx
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Firstly, we examine the role of the decimation factor 
C in the TCSNLMS algorithms. The measurement 
noise )(noη  is now a Gaussian white noise with 

SNR=35dB. 8,4,2,1=C  are tested and the results are 
shown in Fig. 4. The TCSNLMS, the TCSBNLMS, 
and the TCSPUNLMS algorithms all exhibit the simi-
lar performance with regard to various C value. The 
convergence speed decreases with the less weight coef-
ficients being updated. 

Next, we verify the robustness of the TCSNLMM 
algorihtms. The measurement noise )(noη  is now im-
pulsive and modeled as the contaminated Gaussian 
(CG) type impulsive noise [7]. More precisely, it is 
given by: 

)()()(()( nnbnnn wggo )() nim ηηηηη +=+= ,             (18) 

where )(ngη  and )(nwη  are both independent and 
identically distributed (i.i.d.) zero mean Gaussian se-
quences with respective variance  and .  is 
an i.i.d. Bernoulli random sequence whose value at any 
time instant is either zero or one, with occurrence 
probabilities

2
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The variances of the random processes η  and 

)(noη  are then given by  and  

. The ratio   

 is a measure of the impulsive characteristic 
of the CG noise. In this experiment, we set 

2
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=rp , 
100=imr .Other parameters include 99.0=σλ , 7=wN , 

SNR=35dB. For clear view of the impact of the impul-
sive noise on the desired signal, the locations of the 
impulses are fixed and only those at four time instants 
n=5174, 11685, 16463, and 20882 are shown. This is 
realized by generating one fixed Bernoulli sequence 

 with )(nb 005.0=rp  and using it in all of the inde-
pendent runs. Fig. 5 depicts the case of C=4 (others are 
omitted due to space limitation) we can clearly see the 
performances of the TCSNLMS algorithms are signifi-
cantly degraded by the impulsive noise. In contrast, the 
TCSNLMM algorithms show improved robustness and 
quickly assume normal convergence after the instant 
disturbance of the impulsive noise. 

Finally, we study the effects of various value of  
on algorithm performance. Here we employ the 
TCSPUNLMM algorithm with echo path model 

1c

24=L

1c

. All coefficients are randomly generated and 
normalized to unit energy. Similar impulsive noise as 
in previous experiments is applied to the desired signal. 
C=4 and the program is only run once. Three values of 

, 1, 2
1

5 )]1(483. −+
wN

11

1[  (in [15])，and 2.13 obtained in 
previous sectin are tested. From Fig. 6 it can be ob-
served that when =c ，the error signal power is un-
derestimated, and for 2)]1(483.1[ −+=

wN 1
5

1c , is overes-

timated. In contrast, when , the estimate is 
relatively accurate. In fact, under- and overestimated 
error signal power will both result in the wrong judge-
ment of the presence of impulsive noise (i. e. wrong 
presence decision and ignoring, respectively) and thus 
critically deteriariate the algorithm performance. 

13.21 =c
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Figure 4. Convergence performance of TCSNLMS algo-
rithms with various C value: (a) TCSNLMS, (b) TCSBNLMS, 

(c) TCSPUNLMS. 
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Figure 5. Convergence performance of TCSNLMS and 
TCSNLMM algorithms with CG noise: (a) TC-

SNLMS/NLMM, (b) TC-SBNLMS/NLMM, (c) TC-
SPUNLMS/NLMM. 
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Figure 6. The effect of on the estimate of the error 
signal power: (a) 
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. 13.21 =c

Conclusion 

In this paper, we develop a new family of two channel 
sequential PU normalized least mean M-estimate algo-
rithms for stereophonic acoustic echo cancellation in 
impulsive noise. These algorithms are obtained by ap-
plying the robust statistics technique into the conven-
tional two channel sequential PU NLMS algorithms. 
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19 E. L. Lehmann, Theory of Point Estimation. Wiley, 
1983.  

The resultant algorithms show improved robustness 
over their NLMS-based counterparts in combating im-
pulsive noise corrupting the desired signal. The corre-
sponding issue on key parameter selection is also dis-
cussed. 

20 Digital Network Echo Cancellers, ITU-T Recommenda-
tion G.168, 2000. 
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