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ABSTRACT

An expression of the piano soundboard mechanical mobility (in the direction normal to the soundboard) depending
on a small number of parameters and valid up to several kHz is given in this communication. Up to 1.1 kHz, our
experimental and numerical investigations confirm previous results showing that the soundboard behaves like a ho-
mogeneous plate with isotropic properties and clamped boundary conditions. Therefore, according to the Skudrzyk
mean-value theorem (Skudrzyk 1980), only the mass of the structureM, the modal densityn( f ), and the mean loss
factorη( f ), are needed to express the average driving point mobility. Moreover,the expression of the envelope - reso-
nances and antiresonances - of the mobility can be derived, accordingto (Langley 1994). We measured the modal loss
factor and the modal density of the soundboard of an upright piano in playing condition, in an anechoic environment.
The measurements could be done up to 2.5 kHz, with a novel high-resolution modal analysis technique (see the ICA
companion-paper,Ege and Boutillon(2010)). Above 1.1 kHz, the change in the observed modal density together with
numerical simulations confirm Berthaut’s finding that the waves in the soundboard are confined between adjacent ribs
(Berthaut et al. 2003). Extending the Skudrzyk and Langley approaches, we synthesize themechanical mobility at the
bridge up to 2.5 kHz. The validity of the computation for an extended spectral domain is discussed. It is also shown
that the evolution of the modal density with frequency is consistent with the rise of mobility (fall of impedance) in
this frequency range and that both are due to the inter-rib effect appearing when the half-wavelength becomes equal to
the rib spacing. Results match previous observations byWogram(1980), Conklin (1996), Giordano(1998), Nakamura
(1983) and could be used for numerical simulations for example. This approach avoids the detailed description of the
soundboard, based on a very high number of parameters. However, it can be used to predict the changes of the driving
point mobility, and possibly of the sound radiation in the treble range, resulting from structural modifications.

INTRODUCTION

The bridge of a piano soundboard is the location where the
energy of the strings is transferred to the soundboard. This
transfer is ruled by the end condition of the strings which is
described here by a 1-D mechanical mobility or admittance
Y(ω) = V(ω)/F(ω). The purpose of this communication is to
give an expression of the piano soundboard mechanical mobil-
ity depending on a small number of parameters and valid up
to several kHz. In the first section we describe the coupling,
and a bibliographical review of the published measurements is
given. The synthetic description derived from Skudrzyk’s and
Langley’s work is then introduced and applied to an upright
piano: the average driving point mobility and its envelope are
expressed with only the modal densityn( f ), the mean loss fac-
tor η( f ) and the massM of the structure. The measurements
of the modal density and the modal loss factors were done up
to 2.5 kHz, with a novel high-resolution modal analysis tech-
nique presented in our ICA companion-paperVibrational and
acoustical characteristics of the piano soundboarddevoted to
the vibration and some radiation characteristics of the sound-
board (Ege and Boutillon 2010). Finally, we present in the last
section how it can be used to predict the changes of the driving
point mobility, and possibly of the sound radiation in the tre-
ble range, resulting from structural modifications of the piano
soundboard.

MECHANICAL MOBILITY

Coupling

The research of a trade-off between loudness and sustain (du-
ration) is a major issue for piano designers and manufacturers.
The way by which the energy of vibration is transferred from
the piano string to the soundboard depends in particular on the
end conditions of the strings at the bridge. This is a classical
problem of impedance matching between a source (the string)
and a load (the soundboard).

The mechanical load presented to the string can be described
by the admittanceY(ω) (also called mechanical mobility) at
the connecting point (bridge) between the string and the sound-
board. The admittance defines the relationship between the lo-
cal velocityV and the excitation forceF . Since these quantities
are both of vectorial nature,Y is a 3×3 matrix. In principle, the
reciprocal quantity – the impedanceZ = Y−1 could be used
as well. In most mechanical systems however (including mu-
sical string instruments) the force is imposed in one direction
only and the other directions are left totally free. These cases
are described by only three coefficients of the mobility matrix
(see for exampleBoutillon and Weinreich(1999)).If, in addi-
tion, only one direction of motion is under investigation, only
one mobility coefficient needs to be known. In what follows,
the notationY means the ratio between the velocity and the
force in the direction normal to the soundboard. It would be
theYzz coefficient of the full matrix and one should notice in

ISMA 2010 1



25-31 August 2010, Sydney and Katoomba, Australia Proceedings of ISMA 2010

the line of the previous discussion thatZzz 6= Y−1
zz .

The characteristic mobility of transverse waves in a piano string
is always much higher than that of the soundboard. Litera-
ture more often deals with the characteristic impedance and
with the impedance-like quantityY−1 at the bridge. The former
ranges typically from≈ 10 kg s−1 for the long and thick bass
strings to≈ 5 kg s−1 in the treble range (Askenfelt 2006). The
latter is almost 100 times larger with an average low-frequency
level near 103 kg s−1. According to Askenfelt (Askenfelt 2006),
piano makers have reached this value empirically since[it]
gives the proper amount of coupling and decay rate suitable for
musical purposes. Pianos having a larger soundboard mobility
at the bridge tend to sound harsh and to exhibit less than nor-
mal durations of tones according to Conklin (Conklin 1996).
Conversely, if the mobility level falls significantly lower, the
duration is longer than normal while, at the same time, the out-
put seems subnormal.

Measurements at the bridge – A bibliographical re-
view (Wogram, Nakamura, Conklin, Giordano)

Only four measurements of the admittance (or impedance) at
the bridge of a piano soundboard have been published:
Nakamura(1983) (Figure 2) and Conklin (1996) (Figure 6)
present the mobility at bridge whereasWogram(1980) (Fig-
ure1) andGiordano(1998) (Figure3) claim to have measured
the impedance. All of these measurements are done in the di-
rection normal to the soundboard and for upright pianos with
muted strings. Conklin measured both the mobility normal to
soundboard and the mobility in direction of strings of a concert
grand.

Wogram published the first impedance measurements (Wogram
1980). He used an electrodynamic shaker to drive the board
and an impedance head to measure at the same point the ex-
citation force and vibration velocity. Typical results near the
centre of the board are reported in figure1. The resonances in
the soundboard motion appear as the minima of the impedance
magnitude, corresponding toϕ = 0◦ in the−π/2→ π/2 phase
transition. Between 100 and 1000 Hz, the average value of the
impedance is roughly 103 kg s−1. Above this range,|Z| de-
creases uniformly at a rate of about 5 dB per octave to ap-
proximately 160 kg s−1 at 104 Hz. This rapid falloff, almost
inversely proportional to frequency, appears as a measurement
artefact:it has the definite appearance of some purely springy
impedance which is somehow appearing in parallel with the
measured one, according to Weinreich (Weinreich 1995). Gior-
dano (Giordano 1998) adds:it could have been caused by an ef-
fective decoupling of his impedance head from the soundboard
at high frequencies.

Nakamura also had troubles in the high frequency range: the
resonances of his driver and detector seem to have influenced
heavily the coupling in this frequency range. The graphs pre-
sented for a wide frequency band (up to 5 kHz) in Figure2 are
the velocity normalised by the fixed driving force measured
at different point of the bridges of an upright piano assem-
bled and tuned. This quantity corresponds to the admittance
at the driving point. On the graphs (Figure2), the resonances
of the driver and detector are pointed out by a single arrow and
a double arrow respectively. Above 1 kHz1, the mobility be-
comes suddenly much larger. Besides the level of resonances,
this general mobility increase is, according to Nakamura, due
to vibrations between ribs; in the high frequency, the ribs be-
come the fixed edge and the inside board vibrates2. However,

1Note that this value is the same in Wogram’s measurements.
2Nakamura adds in the same paper that he obtained Chladni patterns where

vibrations between ribs are recognised, above 1.2 kHz. Unfortunately, these fig-
ures have not been published.

Figure 1: Magnitude of the impedance|Z| at bridge , and its
phaseϕ measured at terminating point for strings ofF♯4 (key
n◦ 46) of an upright piano in playing situation, afterWogram
(1980).

Nakamura’s measurements need to be reconsidered in the high
frequency range.

(a) Key n◦ 1 (A0 = 27.5 Hz) (b) Key n◦ 25 (A2 = 110 Hz)

(c) Key n◦ 27 (B2 = 123.5 Hz) (d) Key n◦ 40 (C4 = 261.6 Hz)

Figure 2: Mobility at bridge at different terminating point of an
upright piano in playing situation, afterNakamura(1983).

Measurements done by Giordano (Giordano 1998) (Figure3)
confirm this step-like falloff in the local impedance (or mobil-
ity increase) at high frequencies. Giordano notices that the step
only occurs above approximately 2.5 kHz when the measure-
ment is done at bridge.

It is interesting to notice that below the (first) impedance falloff
(≈ 700 Hz), the average levels of the impedance measured at
the bridge near a rib (1 to 2·103 kg s−1) and somewhere else
on the soundboard between ribs (0.6 to 0.7·103 kg s−1) differ
by a factor of 2 to 3, certainly due to the added stiffness by the
bridge. The average low frequency impedance level measured
at the bridge is comparable to Wogram’s measurements.

Nightingale & Bosmans (Nightingale and Bosmans 2006) stud-
ied the influence of the position of the driving point on the
mobility of a periodic rib-stiffened isotropic plate. The space
between the ribs was approximately 40 cm. The figure4 points
out that the real part of the mobility is a function of the dis-
tance to the nearest adjacent rib: the mobility decreases with
the distance to an adjacent rib.

Besides, the mobility increases with frequency and tends to the

2 ISMA 2010, associated meeting of ICA 2010



Proceedings of ISMA 2010 25-31 August 2010, Sydney and Katoomba, Australia

Figure 3: Comparison of the driving point impedance mea-
sured on an upright pianos in two different locations. —: at
bridge (terminating point for strings ofC4 – key n◦ 40), after
Giordano(1998). – –: far away from the bridge, at a mid-point
between two ribs.

Figure 4: Real part of the driving point mobility measured in
different points of a ribbed plate, as a function of the distance
from a rib, afterNightingale and Bosmans(2006).

mobility of an uncoupled infinite plate at high enough frequen-
cies. The figure5 presents the mobility normalised by that of
an infinite plate (asymptotic value of the figure4), plotted as a
function ofkd/(2π) wherek is the wave number in the guide
andd the distance of the point of interest to the nearest rib. The
ribs have almost no effect when the ratiodistance to bending
wavelengthis larger than 1; in other words, the ribbed plate
behaves like an infinite uncoupled plate at these frequencies.
When this ratio is less than≈ 0.25 the influence of the ribs
is large; the measured mobility is much less than that of the
infinite plain plate.

These considerations explain why on the upright soundboard
studied by Giordano, the impedance falloff between ribs ap-
pears at a much smaller frequency than when the impedance is
measured on the treble bridge, close to a rib (≈ 700 Hz for the
red curve and≈ 2.5 kHz for the black curve, in figure3). More-
over, in the light of the conclusions of Nigthingaleet al., we
can expect that the black and the red curves meet above 10 kHz,
with a roughly constant impedance of 200 to 300 kg s−1 cor-
responding to the characteristic impedance of the infinite plain
board for bending waves.

Conklin’s measurements (Conklin 1996) are, to our opinion,
the more accurate and reliable published measurements of a

Figure 5: Normalised mobility as a function of the normalised
wave number in the guide (see text for normalising factors),
afterNightingale and Bosmans(2006).

mechanical mobility at a piano bridge. Typical curves for the
mobility normal to the soundboard are presented in figure6.
For the sake of comparison, we superpose two sets of measure-
ments done for the same concert grand piano. The mobility
when the strings and the plate have been removed appears in
solid black line and the mobility at the same point when the
instrument is fully assembled and tuned in dashed red line.

(a) (0–200 Hz) (b) (0–3.2 kHz)

Figure 6: Bridge mobility (direction normal to the soundboard)
of a grand piano at the terminating point of theE2 strings (key
n◦ 20), afterConklin (1996). —: strings and plate removed.–
–: assembled and tuned.

Without the strings and plate, the mobility is characterised by
a strong modal character up to≈ 200 Hz. Higher in frequency,
resonances are less and less pronounced and the mean value
remains constant up to 3.2 kHz.

When the metal frame and strings are added, the mobility curve
is substantially altered. The frequencies of the first modes is in-
creased while the peak values are about 15 dB less. This could
mean that the modification of the structure has added damping.
This effect can be considered as beneficial since it reduces fluc-
tuations in mobility, as explained in previous section. Above
1 kHz the mobility is less modified. No measurements of the
mobility in the direction normal to the soundboard have been
published by Conklin above 3.2 kHz.

Conklin measured also the mobility at the bridge in the strings
direction (see figure7), with and without the frame and strings.
Again two curves are superimposed in the figures: the mobil-
ity normal to the board (solid black line) and the "longitudinal
mobility" (dashed blue line) measured at the same point. In

(a) Strings and plate removed (b) Piano assembled and tuned

Figure 7: Comparison of the transverse and longitudinal mobil-
ities between 0 and 3.2 kHz at the end point of theC6 strings
(key n◦ 64) of a grand piano, afterConklin(1996). —: mobility
in the direction normal to the soundboard.– –: mobility in the
string direction.

the treble section (C6 strings) and when the board is unloaded,
the latter can be surprisingly larger than the former (by 10 to
20 dB) above≈ 1 kHz (Fig.7.a). The effect of the assembling
on the longitudinal mobility is important: overall decrease of
about 10–15 dB (the large longitudinal tension added by the
strings to the bridge stiffens it and increases its longitudinal
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impedance). Thus, for a piano in playing situation, the longi-
tudinal mobility in treble region is comparable to the mobility
in the direction normal to the board for frequencies between 2-
3 kHz (Fig.7.b). It would be erroneous to ignore this mobility
when dealing with the high-frequency tone of the piano sound.
Askenfelt adds (Askenfelt 2006): longitudinal string motion,
which is known to influence the perception of bass notes, will
thus be able to drive the soundboard rather efficiently in the
high-frequency range.

SYNTHETIC DESCRIPTION

The purpose here is to give an expression of the piano sound-
board mechanical mobility (in the direction normal to the sound-
board) depending on a small number of parameters and valid
up to several kHz.

Analytical expression: sum of the modal contributions

The driving point mobilityYA (at point(xA ,yA)) of a weakly
dissipative vibrating system can be expressed as the sum of the
admittance of single-degree of freedom linear damped oscilla-
tors:

YA(ω) =
VA(ω)

FA(ω)
= iω

+∞

∑
ν=1

Φ2
ν (xA ,yA)

mν (ω2
ν + iην ων ω −ω2)

(1)

wheremν is the modal mass,ην is the modal loss factor,ων
the modal angular frequency andΦν the modal shape of the
modeν .

Skudrzyk mean-value theorem

The exact expression given above is useful to study the vi-
bratory behaviour of a structure in the low-frequency domain
where only a small number of parameters is sufficient to ap-
proximate the response of the structure (usually the sum is
truncated at a pulsation between 3 and 10 times the pulsation
of calculus). Higher in frequency, the detailed description be-
comes inapplicable since the number of needed parameters is
too high. Instead, we present synthetic description of the me-
chanical mobility at bridge based on the Skudrzyk mean-value
method (Skudrzyk 1980). The method is quickly exposed here.

In the mid- and high-frequency domain, the frequency response
of the structure tends to a smooth curve. The vibration can
be described, ultimately, as adiffuse wavefield(see for exam-
pleSkudrzyk(1958) or Lesueur(1988)). Skudrzyk’s idea, pro-
posed inSkudrzyk(1958)–Skudrzyk(1968) and theorised in
its final form inSkudrzyk(1980) consists, in this spectral do-
main, in replacing the exact expression of the admittance (sum)
(1) by an integral. By use of the residue theorem Skudrzyk cal-
culates the integral and shows that the real part of the admit-
tance in high frequency may be written as a function of the
ratio of the modal densityn and the mass of the structureM
only, see (5). Becausen andM are proportional to the surface
S, the asymptotic value of the admittance depends neither on
the excitation point nor on the surface: the structure can be con-
sidered asinfinite in this frequency domain. This asymptotic
value is naturally thecharacteristic admittanceof the structure,
notedYC. By extrapolating towards the low frequencies, Sku-
drzyk’s theory predicts the mean value and the envelope of the
admittance:GC = ℜ(YC) is the geometric mean of the values
at resonancesGres and antiresonancesGares. In summary, Sku-
drzyk’s mean-value methodpredicts the envelope, the mean
value and the asymptotic value of the driving point admittance
of a weakly dissipative vibrating structure. Contrary to statis-
tical methods (Statistical Energy Analysis (SEA) for example,
seeLyon (1975) e.g.), only valid in the high-frequency domain,
this method gives indications on themeanbehaviour of the
structure from the first resonance up to the highest frequencies.

The principal results obtained by Skudrzyk are recalled here;
for the demonstrations the reader may refer toSkudrzyk(1980).
The transformation of equation (1) into an integral is:

YA(ω) →
ω→+∞

YC =
∫ +∞

0

iωΦ2
ν (xA ,yA)dων

mν εν (ω2
ν + iην ων ω −ω2)

(2)

whereεν =
dων
dν

= 2π ∆fν =
2π

n( fν )
is the average modal spac-

ing (written here for pulsations and corresponding to the in-
verse of the modal densityn(ων )). The writing of the denomi-
nator ofYC can be simplified in the hypothesis of small damp-
ing. For the oscillatorν , in the weakly dissipative case (η2

ν ≪
1), the damping termiην ων ω is negligible compared toω2

ν −
ω2 for all ω except on the vicinity of the resonant frequency
ων . The approximation introduced bySkudrzyk (1958) or
Cremer et al.(2005) consists in writing:

ω2
ν + iην ων ω −ω2 ≈ ω̄2

ν −ω2 with ω̄2
ν = ω2

ν (1+ iην )
(3)

Given this, the equation (2) takes the form:

YC =
∫ +∞

0

iωΦ2
ν (xA ,yA)dων

mν εν (ω̄2
ν −ω2)

= GC + iBC (4)

whereGC = ℜ(YC) and BC = ℑ(YC). Finally, by use of the
residue theorem, the real part of the driving point admittance
is given by:

ℜ(YA(ω)) →
+∞

GC =
π

2εν M
=

n( f )

4M
(5)

In this frequency domain, the real part of the admittance de-
pends only on the modal density and the mass of the structure.
For a thin plate, the imaginary partBC vanishes at high fre-
quency (Skudrzyk 1980):

YA(ω) →
+∞

GC =
1

4h2

√

3(1−ν2
xy)

Eρ
(6)

written here in the isotropic case.GC is equivalent to the driv-
ing point admittance of the infinite plate (Cremer et al. 2005).
It depends neither on the frequency, nor on the surface but only
on the thicknessh and on the elastic constants of plate: the
Young’s modulusE, the Poisson’s ratioνxy, and the densityρ .

Envelope

Skudrzyk gives an approached expression of the envelope of
the resonances and antiresonances. Under the assumptions of
well-separated peaks and equal modal masses (peaks of the im-
pulses responses of equal amplitudes), a single-degree of free-
dom damped oscillatorν has an amplitude at resonancefν of:

Gres≈
1

ηων M
=

n( fν )

4M

2

πµ( fν )
= GC β ( fν ) (7)

with β ( f )=
2

πµ( f )
=

2

πn( f )η f
and where the indicatorµ( f )=

n( f )η f is the modal overlap factor defined as the ratio between
the half-power modal bandwidth and the average modal spac-
ing. Generally,µ increases with frequency, and thus the ampli-
tude of resonances decreases. In the theory of Skudrzyk,GC is
the geometric mean value of the admittance (for all the frequen-
cies)GC = (GresGares)

1/2. This yields directly the amplitude of
antiresonances:

Gares≈
GC

β ( fν )
=

n( fν )

4M

πµ( fν )

2
(8)
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Langley calculations

The equations above are valid for small modal overlaps. When
the frequency increases, the contribution of the admittance of
the neighbouringmodes needs to be considered. In that pur-
pose,Langley(1994) modifies the calculus and evaluates ana-
lytically the envelope of the sum (1). He supposes that the reso-
nancesfν are regularly spaced with an average modal spacing
equal to the inverse modal density at the frequency of interest,
that is for the resonancefp: fν − fp = (ν − p)/n( fp). Under
this assumption, the envelope of resonancesGres becomes:

Gres≈ GC
µ( fp)

2π

∞

∑
j=1−p

1

j2 +(µ( fp)/2)2 (9)

It is possible to calculate this sum (by extending the lower limit
on the summation to−∞):

Gres≈ GC coth

(

πµ( fp)

2

)

(10)

Similarly, supposing that the minima of admittance appear half-
way between two successive resonances (that is at frequency

f =
fν + fν+1

2
= fν +

1
2n( fν )

), the envelope of antiresonances

is given by:

Gares≈ GC
µ( fp)

2π

∞

∑
j=−∞

1

( j −1/2)2 +(µ( fp)/2)2

= GC tanh

(

πµ( fp)

2

)

(11)

For small modal overlaps, equations (10) and (11) established
by Langley are equivalent to the ones given by Skudrzyk:

coth(πµ/2) ∼
0

2/(πµ) = β ; tanh(πµ/2) ∼
0

πµ/2 = β−1

For high frequencies, these two factors have the same limit
(one) and the envelope tends toGc, which is consistent with
the theory of Skudrzyk.

Irregular natural frequency spacing

Bidimensional structures, such as plates can present repeated
resonances, degeneracy and thus irregular modal spacing. This
severely degrades the accuracy of the admittance envelope given
by (10) and (11). Langley introduces semi-empirical modifica-
tions in order to take into account these irregularities. The ap-
proach is based upon existing literature concerning statistical
repartition of the resonances in room acoustics,Bolt (1946)-
Bolt (1947) or Sepmeyer(1965). Under the assumption that the
modal spacing conforms to thePoisson law, the amplitudes of
resonant frequencies of a bi-dimensional rectangular structure
are given by (Langley(1994)):

Gres≈ GC (1+ µ−1/2
2 ) coth

(

(1+ µ−1/2
2 )

πµ2

2

)

(12)

where the modal overlap factorµ2 = [1− (L1L2)
−1]µ is mod-

ified to take into account the repeated frequencies.µ2 depends
on the natural numbersL1 andL2 related to the aspect ratio of
the rectangular structure byL2/L1 = Ly/Lx. The amplitude of
antiresonances are:

Gares≈ GC K tanh
(

K
πµ2

2

)

(13)

where the factorK is given by the semi-empirical formula:

K =







1/2.3 si µ2 < 1
1+ µ2−

√µ2

2.3+ µ2−1
si µ2 ≥ 1

(14)

APPLICATION ON AN UPRIGHT PIANO

The theory exposed in the previous section is now applied to
the soundboard of an upright piano placed in a pseudo-anechoic
room. The piano (see figure8) is tuned normally but strings
are muted by strips of foam inserted between the strings or by
woven in two or three places. A particular attention is taken
not to change the mechanical mobility at bridge. The modal
behaviour of the soundboard is investigated by means of a
recently published high-resolution modal analysis technique
(Ege et al. 2009) avoiding the frequency-resolution limitations
of the Fourier transform. The method of measurements, the
signal processing treatments and the extraction of the modal
density and mean loss factors (up to 2.5 kHz) are exposed in
detail in our ICA companion-paperEge and Boutillon(2010)
devoted to the vibration and some radiation characteristics of
the piano soundboard.

A0

B2

x

Wood grain direction y

θ ≈ 33o

p
≈
13
cm

A#2

C8

Figure 8: Rear view of the upright piano studied.

We present in figure9 the real part of the synthesized admit-
tance (equation (1)) of the soundboard modelled as a dissipa-
tive structure where the asymptotic modal density, mean loss
factor, and mass are equal to the one measured on the real
structure for the frequency domain where the ribbed board be-
haves as a homogeneous plate (seeEge and Boutillon(2010)):
n∞ = 1/19.5 modes Hz−1, ηmean= 2%,M = 9 kg. In this first
calculation, the resonances are supposed regularly spaced and
all the modal masses supposed equal. The synthesized admit-

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

Frequency [Hz]

R
e(

Y
) 

[s
 k

g−
1 ]

 

 Re(Y
A
) synthesised

Envelope, according to Skudrzyk
Envelope, according to Langley
Characteristic admittance G

C
 (asymptotic value)

Figure 9: Synthesized real part of the driving point admittance
YA( f ) (—) for a weakly dissipative structure with regularly
spaced resonances. The average modal spacing, the mean loss
factor and the mass are measured on our upright soundboard.
The characteristic admittanceGC (– –) is calculated with Sku-
drzyk’s mean value method, and the envelopes of resonances
and antiresonances are given by Skudrzyk(–·–) equations (7-
8) and Langley(—) equations (10-11).

tance tends towards the theoretical asymptote, and the enve-
lope given by the first calculus of Langley (10) coincides for
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the whole spectrum with the resonances and antiresonances
of the syntesized admittance. The approximation of Skudrzyk
is satisfactory only for frequencies less than≈ 200 Hz, corre-
sponding to a modal overlap smaller than 20% (average modal
spacing more than five time the half-power modal bandwidth).

Secondly, we refined the model by considering now the struc-
ture as an isotropic rectangular plate, of constant thickness, of
dimensionsLx = 1.39 m,Ly = 0.91 m and total massM = 9 kg.
Indeed, up to 1.1 kHz, our experimental and numerical investi-
gations confirm previous results showing that the soundboard
behaves like a homogeneous plate with isotropic properties
and clamped boundary conditions (the mechanical character-
istics of the homogeneous plate are given inEge and Boutillon
(2010)). For this calculus, the natural frequencies of the plate
are calculated analytically (boundary conditions supposed to
be simply supported). Thus, contrary to the previous case, the
spectral repartition of the resonances is now irregular. The modal
shapes are given by

Φmn(x,y) = sin(kxm x) sin
(

kyn y
)

with m andn natural numbers, and where the wave numbers
in directionsx andy arekxm = mπ

Lx
andkym = nπ

Ly
. The modal

masses are equal toM/4. We present on figure10 the driv-
ing point admittance (equation (1)) synthesized for a point of
the medium bridge: here in (4Lx/5,5Ly/6). The mean value

10
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Re(Y
A
) synthesized

Envelope (Langley, first calculus)
Envelope, (Langley, second calculus)
Characteristic admittance G

C
G

C
 (with boundary conditions)

Figure 10: Real part of the driving point admittanceYA( f ) (—)
synthesized for a point of the medium bridge of the piano
soundboard studied and for simply supported boundary condi-
tions. In order to take into account the irregularity of the modal
spacing, the envelope ofℜ(YA) (—) is semi-empirically mod-
ified in (–·–) according to Langley, equations (12-13). At low
frequencies, the mean valueGC (—) deviates from the asymp-
tote(– –) due to the boundary conditions.

of the mobility between 100 and 1000 Hz is approximately
1.3 · 10−3 s kg−1 corresponding to an impedance of about
800 kg s−1. This value is consistent with the measurements
at the bridge published byWogram(1980) or Giordano(1998):
these authors measured a mean impedance for typical upright
piano of about 103 kg s−1 (see second section). Moreover,
the fluctuations of the mobility for those frequencies are±10-
15 dB, which is also consistent with measurements published
by Conklin (1996) for example. Concerning the envelope, we
observe that the first calculus by Langley underestimates the
amplitudes of oscillations of the mobility. The semi-empirical
modifications corrects partially the envelope that becomes sat-
isfactory around 1 kHz.

INTER-RIB EFFECT – STRUCTURAL MODIFICA-
TIONS

For frequency higher than 1100 Hz this simplest model is no
more valid. Indeed, the half-wavelength at 1.1 kHz is equal

to the average distancep between two consecutive ribs:ribs
confine the wave propagation. The soundboard behaves as a
set of waveguidesin this spectral domain. This behaviour, al-
ready found by Berthautet al. (Berthaut et al. 2003), is ex-
perimentally and numerically shown in our companion paper
(Ege and Boutillon 2010): for frequencies above 1.1 kHz, the
modal densityn( f ) measured on the soundboard falls signifi-
cantly and the antinodes of vibration of the numerical modal
shapes are localised between the ribs. A simple model of this
bi-dimensional propagation media is developed from wich the
modal density of the first transverse mode of the waveguide
is derived. The latter takes the form (the complete calculus is
presented inEge and Boutillon(2010)):

n(ω) =
Ly

π

√
2Cω

√
A2 +4Cω2−4B

(√
A2 +4Cω2−4B−A

)1/2

(15)

whereA =
D2 +D4

D3
k2

xm
, B =

D1

D3
k4

xm
,C =

ρ h

D3
and where the

Di are the constants of rigidity of spruce, considered as an or-
thotropic material (of main axesx andy):
D1 = Exh3/(12(1−νxyνyx)), D2 = νyxExh3/(6(1−νxyνyx)),
D3 = Eyh3/(12(1− νxyνyx)) and D4 = Gxyh3/3. E is the
Young’s modulus,ν is the Poisson’s ratio,ρ the density,h the
plate thickness andLy the length of the waveguide. The direc-
tion x is parallel to the grain of the spruce board and, thus,
perpendicular to the ribs (see figure8).

We extend now the approaches of Skudrzyk and Langley for
this bi-dimensional media. The mean value of the driving point
mobility in this spectral domain is given by the relation (5)
where the modal densityn and massM are replaced now by
the ones of the waveguide considered. Hence, for the sound-
board studied, the mean value of the impedance would fall in
theory from 800 kg s−1 before localisation of the waves to a
value at 2500 Hz for example of 230 kg s−1 (about 3.5 times
less). This value is calculated for the waveguide 2-3 (located
between the second and third ribs) situated in the treble area of
the instrument (upper left corner). This waveguide has a thick-
nessh≈8 mm, a lengthLy ≈ 55 cm, a width (inter-rib distance)
p≈ 12.8 cm and a modal densityn≈ 4 ·10−3 modes Hz−1 at
2500 Hz.

The fall of impedance (rise of mobility) predicted by our syn-
thetic description in the high-frequency range match previous
observations by Wogram, Nakamura, Nightingaleet al.or Gior-
dano (see the bibliographical review given above). In particular,
the value obtained theoretically for a typical waveguide is very
close to the published measurements of Giordano for example
(figure 3) who measured an impedance value of about 200 to
300 kg s−1 in the treble area of the instrument and between
two consecutive ribs.

These results points out that the rise of mobility in this fre-
quency range is directly linked to the inter-rib effect appearing
when the half-wavelength becomes equal to the rib spacing.
Thus the inter rib distancep appears as a fundamental param-
eter in the acoustic of the instrument. If this distancep is too
large, the mobility at bridge will be too great in the treble range
and the piano will exhibit less than normal durations of tones
and a harsh sound. Conversely itp is too low (too much ribs on
the board) the mobility level will be small, the duration longer
than normal while, at the same time, the output will seem sub-
normal in the treble.

The previous paragraphs shows how the synthetic description
can be used to predict the influence of a structural modification
on the driving point mobility. Similarly, the modification of the
thicknessh of the waveguide but also of the material character-
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istics (Young’s modulusE, densityρ) may be linked to the
modal density and the mass of the propagation media and thus
to the mean value of the driving point mobility, thanks to the
synthetic description developed.

In order to go one step further in the analysis and envisage
a possible improvement of the sound of the instrument, the
construction of a soundboard on which the influence of these
structural modifications may be directly measured is an abso-
lutely necessity. We found only one experimental study, car-
ried out by Conklin on a concert grand, where the influence of
ribbing on the driving point mobility is investigated (Conklin
1975). Conklin built a soundboard with 39 ribs (more than
twice the usual number), reducing the spacingp to a value of
≈ 5 to 6 cm. With this value, the first cut-off frequency (when
the wavelengthλ = 2p) is raised at the highest frequency of
Conklin’s interest, that is in his study the fundamental of the
highest string of the piano:C8 ≈ 4186 Hz. The height of the
ribs was the same as those of a normally-designed soundboard.
Their width was changed to around 1.1 cm, approximately one
half of the usual value, in order to keep almost the same stiff-
ness and mass of the conventional board (the moment of iner-
tia Irib of a rib that determines its stiffness is proportional to its
width a but varies as the cube of its heightb: Irib = ab3/12). In
his own words, Conklin’s new soundboardhas improved uni-
formity of frequency response, improved and extended high fre-
quency response, higher efficiency at higher frequencies, and
improved tone quality. Nevertheless we believe that these con-
clusions need to be taken with precautions. No measure were
published and the soundboard has not been commercialised. It
presented surely some defects not reported by the author.

CONCLUSION

We have given an expression of the piano soundboard mechan-
ical mobility (in the direction normal to the soundboard) de-
pending on a small number of parameters and valid up to sev-
eral kHz. This synthetic description is derived from Skudrzyk’s
and Langley’s work: the mean value of the driving point mobil-
ity and its envelope are expressed with only the modal density
n( f ), the mean loss factorη( f ) and the massM of the struc-
ture. This theory is applied to an upright piano, from which
the modal density and the modal loss factors were measured
beforehand up to 2.5 kHz with a novel high-resolution modal
analysis technique (Ege and Boutillon 2010). The synthetised
mechanical mobility at bridge matches experimental observa-
tions and could be used for numerical simulations for example.
In particular it is shown that the evolution of the modal den-
sity with frequency is consistent with the rise of mobility (fall
of impedance) in this frequency range and that both are due
to the inter-rib effect appearing when the half-wavelength be-
comes equal to the rib spacing.

This approach avoids the detailed description of the sound-
board, based on a very high number of parameters. Moreover
the synthetic description can be used to predict the changes
of the driving point mobility, and possibly of the sound radia-
tion in the treble range, resulting from structural modifications
(changes in material, geometry, average ribs spacing, etc.).
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