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ABSTRACT

The helical spring is a structure which has seen little itigation in the context of musical acoustics; though it doets
play a role in musical instrument acoustics, it is the priynabrating structure in electromechanical spring revesbe
tion devices. The response of a spring is, however, everrlingar conditions, far more complex than that of a straight
rod, and consists of multiple echoes at distinct velocittésa highly dispersive character, subject to multiple duto
frequencies. In the interest of developing digital emolagi it is thus useful to obtain a complete picture of the per-
ceptual importance of the various features in a reverlmratntext, through an investigation of dispersion curves a
associated group velocities. Additional difficulties inér@ in numerical simulation methods, also with an eye tewrd

perceptual considerations, will also be discussed.

INTRODUCTION

The vibration of a helical spring forms the basis for artifi-
cial spring reverberatior8[ 20, 15], a popular classical elec-
tromehanical reverberation technique. Such units, wioifey |
since superseded by digital reverberation devices (ndymal
based on sampled impulse responses or simple digital féter d
signs), possess certain special qualities which make eiomnila
through physical modeling methods, somewhat challenging.
Such emulation of electromechanical and analog electanic
dio effects has been quite popular recently—see, e.g.ethe r
cent special issue of the IEEE Transactions on Audio Speech
and Language Processing/] for a wide range of applications.
Digital emulation of the spring reverberation unit has bapn
proached using all-pass filter design techniqugsdelay lines
[10] and finite difference schemed][

The typical response of a wire is complicated enormousbknev
under linear conditions, by the effects of curvature—thalyan

sis of such behaviour is best approached in terms of dispersi
curves, relating wavenumber to frequency, which exhibit re
gions in frequency of both low dispersion (leading to retliy
coherent echoes) and high dispersion (leading to a moresdiff
response or chirp-like echoes). Coherent echoes reswdtypur
from wire curvature, and are not present in a straight wire.
More generally, such dispersion analysis allows for a means
of extracting important perceptual attributes of the gprie-
sponse, such as echo density, mode density and variou$f cut-o
frequencies—a necessary step in the calibration of an audio
processing algorithm. Dispersion analysis has also beeth, us
in the context of stiff string models, as a means of designing
terminating filters for digital waveguide desigrg.

In this short paper, a model of helical spring dynamics will
be presented, in the interest of determining features afeper
tual interest—this is preliminary work, intended as an aid t
future modeling work in conjunction with measured data, and
especially to help in the analysis of spring responses, twhic
are enormously complex. The model, suitable for thin sging
is a simple two-variable form reduced from a more complete
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thick-spring model and is detailed in the first section. la th
next section, dispersion curves are derived, followed bgxan
amination of the dependence of the curves on angle, cut-off
frequencies, and the dependence of group velocity (and thus
echo recurrence rates) on frequency and wavenumber. Some
simple measured spring responses are examined subsgquentl
in this light. Finally, there is a short discussion of the ramm

ical issues in moving from a continuous problem to a discrete
time framework (for digital emulation).

A THIN SPRING MODEL

The starting point in many investigations of helical spriyg
namics is the model of Wittrickl[g]—see, e.g.,19, 11]. Such

a model, written as a system in twelve variables, incorgsrat
effects of large thickness, and may be considered to be an ex-
tension of the Timoshenko theory of beam vibrati@htp the
case of a beam with curvature. This system, which will not be
presented here, possesses six dispersion relations, jpitdesa
the dynamics of the spring to very high frequencies (into the
MHz range for springs of dimensions typical in reverbematio
applications). Given that (a) such springs are normallyequi
thin, (b) the range of frequencies of interest in audio apli
tions is much lower< 20 kHz), and normally only two of the
six dispersion relations lie in the audio range and (c) cdapu
tional expense will become an important issue if such a model
is to be used, eventually, as a virtual emulation, a simpken®
spring model is a more useful starting point. (A comparison
between the dispersion curves of the full model and the thin
spring model appears later in this section.)

There are many such thin spring models, and it is important
that the perceptual attributes of the model not be disturbed
through such an approximation. One model, presente]jn [

is similar to that given inZ%] and other standard models of
annular rings 7], and was used subsequently i for vir-

tual spring emulation. Such a model assumes zero helix angle
(i.e., the spring is modelled as a series of rings), andftdith
approximates the lowest dispersion relation. However, ids w
be seen shortly, the dispersion characteristics of a spléng
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pend very strongly on angle—and furthermore, there are two
closely spaced dispersion curves in the audio range. Areang|
dependent two variable model, closely related to that gimen
[5] will be taken as the starting point here.

Model Equations

The geometry of a helical spring is as illustrated in Figlire
indicated in the figure are the coordinate [0, L], representing
arc length along the wire, of total unwound lengthas well

as a transverse displacemeh{which is nearly parallel to the
spring axis, when the helix angle is small), and a longitabin
displacemenw’ (which is in the direction of of the wire itself

at any given point along the spring). In the model which fol-
lows, the displacements will be dependent on both the dpatia
coordinated, and timet’, i.e.,vV =V (X ,t'), w = w/ (X, t').

Figure 1: A helix, of wire radius, and coil radiuR. The co-
ordinatex’ (in green) runs along the midline of the wire, and
displacements/ (longituidnal) and/ (transverse) are as indi-
cated. .

The wire itself is of radius, and of circular cross section, with
cross sectional area= 72 and moments of inertik, andly
about they andw directions. The coil radius IR, and the helix
angle (in radians) is here written as (Angles in degrees will
be written as/.) Material parameters for the spring are the
density, p, in kg/m?, and Young’s modulu€ and the shear
modulusG = 1E/(1+ v), for Poisson’s ratiov, both in Pa. In
scaled coordinates, i.e., defining

x=Xcog(a)/R v=Vcof(a)/R w=wcos(a)/R (1)

and

PARA
- 2
Elycost(a) @
the following simplified model of spring dynamics follows di

rectly from the general model of Wittrick, under the assump-
tion that the spring is thin:

Aut = Qmy

t=t'/ty to=

Dm = QUX (3)

Here,u = [v,w]' is a vector containing the transverse and lon-
gitudinal displacements, and subscripgndx indicate partial
differentiation with respect tg andt. The matrix operatoré,

D are defined as

A {1 0 } b {1 0 } @)
e 62 e 62
0 1-45 0 d-gz
and the operataD as
—-2r 2-1- 2
Q= [ 2 4 & 2 (5)
2o1- 8 2r(1- %)
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In this non-dimensional form, the system depends on the two
parameters
T:tar(a) d:Elw/GIV (6)

Such a two-variable model is very similar to that given%h [
(the discrepancy may be due to an error in this article, insEqu
tion 5). These same authors give a valud ef 1.3, for a spring
of circular cross-section, and for Poisson'’s rati8.0

Not presented here are the boundary conditions, six of which
must be supplied at each end of the spring.

DISPERSION CURVES AND EIGENSTRUCTURE

Dispersion curves for systerB)(follow directly, under the as-

sumption of a wave-like solution, of angular frequeneyand

wavenumberf3. The system may then be written, at steady

state, as o
w’0=R0 R=p°A1QD1Q (7)

wherel is a vector of complex amplitudes, and where the ma-

trices above become, in terms of wavenumBer

A 1 0 - 1 0

A—{o 1+ﬂ2} D‘{o d+E2} ®)

r271+32} )

A -2t
Q= [rzf 1+p% 2t(1-p?)

Dispersion curves may be derived easily by taking the eigen-
values ofR(B); if AT(B) andA~(B) are the two eigenval-
ues (both positive), then the dispersion relatioss(3) and

w™ (B) are given simply as

W (B)=VAT(B) w (B)=VA () (10)

For reference, in Figurg at top, the two curves are plotted,
as a function of, for a spring of thickness typical of spring
reverberation units, and for a helix angle.6f= 5°. The dif-
ference between the curves generated by sysgrarnd the

full twelve variable model is shown at bottom; it is most pro-
nounced at high wavenumbers, and is negligible over most of
the audio range.
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Figure 2: Top: non-dimensional dispersion curves (B)
(grey) andw (B) (black) for the model ). Bottom: Differ-
enceAw between curves generated by mod#)l, @nd a full
twelve-variable model, incorporating effects of thicksielh
this case, the spring has= 0.0875, andd = 1.3.

ISMA 2010, associated meeting of ICA 2010



Proceedings of ISMA 2010
General Features

The two curves possess a similar form. Each exhibits a pyimar
hump covering the range of wavenumbers betw@en0 and

B = 1, and reaching a peak at a wavenumber slightly above
B = 0.5; the hump is thus not symmetric, even in the limit of
small angle. The lower (-) curve possesses a zefo-ad, and

an additional zero g8 = By = V14 12. At B = [y, the mo-
tion of the spring is thus rigid body, where the correspogdin
wavelength is exactly one turn of the helix. At wavenumbers
above the primary hump, both curves approach bar-like dispe
sion curves, with a general dependence3én

Dependence on Angle

The general shapes of the curves exhibit large variatiosn ev
for very small angles (which are normally on the order of be-
tween 1 and 4 degrees for spring reverberation units). Sge Fi
ure3. The lower curve retains a zerofit= 3y = v1+ 12, but
becomes progressively smoother as angle increases. The upp
curve, however, possesses a minimum which increases with
angle, until an angle of approximately = 14°, after which

it becomes purely monotonic. Notive that the curves are not
identical when the helix angle is zero; at zero helix andie, t
system decouples into pure longitudinal and transverssmot
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Figure 3: Variation of dispersion curvas™(B) (grey) and
w~ (B) (black) with helix angle for the modeB). The thick
curves represent the uncoupled dispersion relations when
0°, and moving progressively away from them are curves with
£=2°,4,6°,8°

Cut-off Frequencies

There are various cutoff frequencies associated with tke sy
tem, allowing the determination of the number of wavelike
and evanescent solutions in a given frequency range. Ther low
curvew™’ possesses a maximum at (for very low angles),

W, ~03 at p=~053
and similarly, for the upper curve,
w!~034 at PB=053

These are indicated as horizontal black and grey dotted,line
respectively, in Figurd.
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In spring reverberation units, these cutoffs (in dimenaiamits)
normally occur in the range between 2 and 5 kHz, and consti-
tute one of the major perceptual features of a spring reverbe
ation unit, the sound of which is primarily low-passed, with
superimposed high-frequency noise-like component.

0 0.2 0.4 7 0.6 0.8 1 1.2 14

B
Figure 4: Dispersion curves for systerd),(where the helix
angle is/ = 4°. Cutoff frequencies are indicated by horizontal
dotted lines, and regions over which there are distinct rernb
of traveling components to the solution by different colors

In addition to the high-frequency cutoffs, the (+) curve pos
sesses an additional low-frequency cutoff slightly befow 1.
For low angles, the cutoff occurs at approximately

W =21 (11)
which is indicated as a horizontal dotted grey line in Figlire
This frequency is normally under 1 kHz for a typical spring
reverberation unit.

Traveling and Evanescent Components

The number of intercepts of the pair of curves at a given fre-
quency indicates the number of traveling (i.e., real wavenu
ber) components to the solution at this frequency. Regiéns o
distinct numbers of traveling components are indicateddby c

orsin Figure4. Belowwéf), thus, there are four such solutions
(in yellow); betweerwéf) and wé;) there are six (in green);
betweenwé;) and wéi) there are four (in blue); and above

ooéi) (at least until the range of very high frequencies, at which
point the full thick spring model will be necessary for a com-
plete count), two (in red). Such waves are uni-directionialr—
the spring system, there will be a symmetric set of compo-
nents traveling in the opposite direction, thus the totahber

of traveling components will be twice the count here.

This characterization is valid, provided that boundarydion
tions are not frequency dependent—but is a spring reverber-
ation unit, they may well be slightly so, due to the nature of
the excitation mechanism (essentially a massive bead fixed t
one end of the spring and driven electromagnetically), &ed t
pickup (a similar bead moving within a magnetic field at the
opposite end).

Group Velocity and Echoes

One of the interesting features of spring reverberatiorsuni
is the strong presence of coherent echoes in the resulting re
sponse; as mentioned above, such echoes are notably absent
in other electromechanical reverberation devices (sugiieds
reverberation9]), and are more prominent than in the case of
a straight wire.
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Figure 5: Group velocity curvedw™ /df3 (grey) anddw™ /d
(black) for the modelJ), with helix angle/ = 2°.

To this end, it is interesting to examine the behaviour of the
group velocity curves associated with the dispersion airve
) andw(~), which may be obtained by differentiation with
respect to wavenumbé. The two curves are shown in Figure
5. Regions over which the curves are relatively flat corredpon
to coherent wave propagation; of particular interest azdith-
iting values of the curves in the limit gsapproaches zero:

v<g+) ~1

vy =1vd< (12)

Complicating the analysis of measured responses somewhat,
in the low frequency ranges, is the presence of not merely the
coherent echo set nefir= 0, but the also somewhat less co-
herent set which may be observed from the flat portion of the
group velocity curves negd = 1—which, from the dispersion
relation, lie in the same frequency range as the set memtione
above. There are thus four distinct wave speeds very cloke to
in the range of low frequencies.

Echo densities may be estimated (roughly) by dividing tleaigr
velocity by the unwound spring length. Spring reverberatio
units are often designed such that this density is betwefn 20
and 50/s.

MEASURED SPRING RESPONSES

In a preliminary study, spring response measurements were
taken from a Belton MB3BB2C1B spring reverberation unit
driven by a Doepfer A-199 spring driver/preamp unit. Reg@sn
were obtained using a sine-sweep method with a sweep-time
of 10 seconds. Individual springs (of the three in the unéjev
measured by damping the other springs using foam. The spring
responses shown in this section are all drawn from a single
spring, made of stainless steel, and of helix angle 2.2°.

A spectrogram of a spring response is shown in Figufienough
the response is rather complex, various features are yesuhl
parent. First, there is a clear cutoff in the region of approx
mately 3 kHz, and, below it, a main series of echoes (which ap-
pears as a set of black arcs in the spectrogram) which lags pro
gressively towards this cutoff, thus illustrating the sttmwn

in velocity in the region of the primary cutoffs (see Figie

In the region of the first reflections, clear secondary echoes
also visible, with an echo density slightly different froimat

of the main series. Above the cutoff, the response is much sim
pler, and consists of a series of echoes, for which velacitie
increase with frequency—this is the region of a pure bag-lik
response, corresponding to the rightmost branches of the di
persion curves as shown in Figize

There are various features which are not adequately exgglain
by the model—one is the presence of a transition at approxi-
mately 5 kHz, which could well be due to a resonance of the
driving mechanism (essentially a mass-spring system).
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Figure 6: Spectrogram of a spring impulse response.

Most interesting are discrete transition frequencieowehe
primary cutoff, dividing series of echoes which propagdte a
close but distinct velocities; these are visible in Figirehow-

ing three such transitions in the 0 to 1.5 kHz range. It idyfair
clear that these must correspond to regions of distinctpgrou
velocity over the available branches of the dispersion esirv
shown in Figure2 (as many as six). The nature of these dis-
crete transitions (as opposed to a continuous mixing of s/ave
of all possible speeds at a given frequency) is not clear. The
crossover is also easily visible in a spectral plot of theltep
response, as shown in Figude the transition may be seen
as a region of superposition of two families of nearly eguall
spaced components.

Yet another interesting feature is that, above the primaty ¢
off, instead of a double series of echoes, correspondingtto b
branches of the dispersion curves in this region, a cleatesin
set is visible; a full analysis of boundary conditions is e®c
sary to determine which of the two types of motion is dominant
over such a frequency range.
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Figure 7: Detail of a spectrogram of a spring impulse resppns
illustrating transitions between families of echoes wittidct
velocities over different frequency regions; transitioefuen-
cies are indicated by red lines.

NUMERICAL CONSIDERATIONS

The simulation of spring vibration, even using a simplified
model such as that presented here, presents great challenge

ISMA 2010, associated meeting of ICA 2010
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Figure 8: Detail of spectrum of the spring impulse response,
showing a transition between two distinct families of riskaly
equally spaced peaks.

numerically—ideally, one would like an algorithm which &l

as input parameters, the sample rate and the various géometr
and material constants which define the spring (or, perhaps,
the reduced parameter set consistinglpf andtp), apply an
input signal, and obtain a reverberant output. It is alsa-obv
ously preferable to have an algorithm which operates at-a rea
sonably low sample rate, and with minimal computational and
memory requirements both in the main run time loop operat-
ing at the sample rate, and in terms of precomputation before
run time. The various techniques which are used in physical
modeling applications all lead to various distinct diffites$ in

the present case of the spring; here, the hurdles to be awerco
(which are not insurmountable!) will be outlined in brief.

Digital Waveguides

Digital waveguides 14] have been used with great success in
the simulation of 1D linear systems exhibiting low dispenrsi
such as, e.g., strings, and acoustic tubes of nearly cydadr
conical bore brofile; indeed, as the structure consists efayd
line, with effects of dispersion and loss lumped in low-arde
terminating filters, they can be far more efficient than \aty
any other simulation technique.

The low dispersion mentioned above, in, e.g., strings,dead
to a monotonically increasing dispersion relation, or, tineo
words, a wave velocity of a traveling component which in-
creases with frequency, leading to perceived inharmanikit
the waveguide context, a practical solution is the insertib
all-pass filter structures at the termination of the wavegypi
leading to the desired variable group velocity. Even in $liis-

ple example, there are two points worth mentioning:

First, in a stiff string, evanescent components will be nés

and there is as yet no known mechanism for representing such
components in a delay line structure. Linked to this phenmmne

is the need for specifying an additional boundary conditbn
either end of the string; such additional conditions hage al
not been addressed in the literature. In strings, effecssiff

ness are normally quite small, so this is not a matter of aonce

in audio simulation, but for stiffer structures such as ptrs
precise form of the boundary conditions leads to great diffe
ences in perceived sound output.

Second, the order of the terminating correction filter islsma
when dispersion is low, but can become quite large undeehigh
stiffness; thus, the efficiency advantage of a waveguidadier
lation is progressively lost as stiffness increases.

Now consider the present case of the helical spring; at any
given frequency, there are as many as six distinct wave veloc
ities. This implies a structure which would require six thdji
waveguides, or bidirectional delay line pairs, each witragh
sociated termination filter allowing for variation in group-
locity with frequency. There are several open question$éis
fore, there is the issue of the representation of evanesoemt
ponents, which in contrast to the case of the string, areeptes

in a number which depends on frequency; linked to this isragai
the need for setting boundary conditions, leading to a @ulipl
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termination among the waveguides. A more delicate issue is
that of the non-monotonicity of the dispersion curves—zero
group velocity is attained at a non-zero wavenumber, inmglyi

an infinite-length (or, in practice, extremely long) delagel

Modal Methods

The helical spring, given that its behaviour is presumaiply |
ear (at least in audio applications), and that input andwutp
are applied and read at locations which are not varied, is a
good candidate for a modal approach. Given syst&mahnd

a set of six boundary conditions at either end of the spring, o
may, in theory, solve for the modal frequencies and shapes (o
in this case, the amplitudes of the modal functions at the in-
put and output locations), and an exceedingly simple stract
results, relying on uncoupled digital oscillators (“twolgs").

An additional bonus is complete control over damping foi-ind
vidual components, which may be set directly from measured
responses. Modal methods have been used extensively in phys
ical modeling of musical instrument&3].

The most straightforward means of obtaining modal data is
through a steady-state approximation3ptbrough, e.g., finite
element, or finite difference methods; the spatial defrestare
discretized over a grid, with boundary conditions taken at-
count, and an eigenvalue problem results. This is a common
approach in mechanical engineering applications, but imeist
used with caution in an audio setting for the following re@so

(a) in most industrial applications, one is interested hydama

few low frequency modes; such is not the case in audio, where
one requires good accuracy over the entire spectrum (¢ensis
ing of between 400 and 1000 modes for a typical spring rever-
beration unit) and (b) one may need to make use of a very large
number of degrees of freedom (far greater than the number of
modes) in order to obtain good accuracy—such computation
must be performed off-line, and can thus introduce notileeab
latency in an audio application.

As an alternative, instead of solving the eigenvalue prable
directly, employ the dispersion curves directly, and sdtwe
B(w), yielding twelve solutions. The twelve required bound-
ary conditions (six at either end of the spring) may then be
used to construct a 2212 matrix B(w), whose determinant
will vanish at a modal frequency of the system. In order to de-
termine the modal frequencies of the system, one may thpn ste
through the determinant witls, and search for changes in sign
of this determinant. Such a procedure is functionally samtib

the dynamic stiffness method employed by some autHdis [
and has the advantage of allowing the determination of the
modal frequencies to arbitrary accuracy. Here too, ther@ar
merical difficulties—modal frequencies can be extremebgel
together, and one may need to step through the determinant us
ing a very small increment in frequency, and above the pgmar
cutoff, where evanescent solutions are present, numeigei

ing issues can become very severe.

Finite Difference Time Domain Methods

In theory, a finite difference approximation to the heliqaisg
system should be able to sidestep all the difficulties maertio
above; there is also no heavy precomputation of the type asso
ciated with modal methods.

The problem, in the case of FDTD is numerical dispersion—a
direct discretization of systen8) using second-order differ-
ence schemes yields very poor results—see Figuitkistrat-

ing dispersion relations for the model system, and numilerica
dispersion relations for a simple FD scheme. At a reasonable
audio sample rate (in this case, non-dimensional, but €orre
sponding to 44.1 kHz), the scheme is only correct at very low
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frequencies, and is unable to capture many important festur
such as cutoffs; in particular, the high-frequency wavesdpe
above the cutoff will be wildly inaccurate.

15 2

0 0.5 1
P

Figure 9: Dispersion relations for the model system (solid
lines) and for a simple FD approximation (dotted lines). The
sampling frequency (non-dimensional) is shown as a red dot-
ted line.

There are two remedies. One is to work at a much higher audio
rate (generally, at least 200 kHz will be required for a ppfce
tually accurate simulation), which can be prohibitivelyer-
sive, given that systen8) will require, by its very nature, an
implicit numerical method. Another is to make use of a more
accurate scheme, and there are many choices. Higher-axder a
curate time stepping schemes, in conjunction with accaate
proximations to spatial derivatives are one possibility] do a
much better job of approximating the system over the low fre-
quency range, but are still unable to capture the behavibur o
the system above the primary cutoff—the same is true of, e.g.
pseudospectral methodsd], which will giving very high ac-
curacy at low frequencies, generally exhibit a very highrdeg

of dispersion at higher frequencies and artificial bandlimi

A better choice is a parameterized low-order scheme (compac
implicit [12]), optimized to match the dispersion relation of
the model system over a given frequency range, and which
operates at a reasonable audio sample rate. Such schemes are
presently under study. Needless to say, a good finite diftere
approximation can also be used as a means of obtaining modal
data.

CONCLUDING REMARKS

This paper is intended as a rough sketch of the dynamics of
spring reverberation units, and to indicate some of theggerc
tual features of interest; the model presented here is Sietpl

as far as possible from a more complete model, and it is doubt-
ful that further simplification is possible without losingip
ceptually salient features of the spring. Even still, asteen
noted above, there are features of measured responses which
are as yet not well explained by this model. Numerically, the
problem of simulation of helical spring dynamics is a verirde
icate one, regardless of the method one employs; the difficul
ties are distinct, however, depending on the type of method
employed.

The model presented here is lacking is several featuresiOne
a model of loss; though generally small for reverberation de
vices, it is clearly frequency-dependent to a high degreés a
clearly evident in Figuré; loss will result from effects of ra-
diation in the spring itself (presumably quite small), iz
losses in the spring (larger), and due to the (as yet unmod-
elled) driving mechanism, which has a built-in damping mech
anism. Another, very important consideration which has not
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been discussed here, is the precise set of boundary corlitio
to be applied (six) at either end of the spring—this must also
include the coupling to the excitation and readout mechasis
Though conditions in the longitudinal direction are faielgsy

to deduce, the conditions on transverse motion are harder to
ascertain, and there are numerous choices.

The measurements described here are not intended for seriou
study, but for a first look at some of the properties of the re-
sponse of a spring reverberation unit. They have been taken
directly from the pickup, and thus the effects of the driving
mechanism, as well as the accompanying electronics are all
present. In a more rigorous study, one would of course want
to make pure acoustical measurements of the spring befraviou
in the absence of electronic amplification; such work is unde
way.
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