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ABSTRACT 

A common annoying phenomenon which arises with most cellos and violas is the so-called "wolf note". This is a 

warbling sound stemming from a severe interaction between the string and the body motions, coupled through the 

instrument bridge. Instrument builders have found that adding a small auxiliary mass on the so-called "dead" side of 

the string often inhibits the wolf phenomenon. However, the tuning of such "wolf-eliminators" is often laborious, 

erratic, if not ineffective, because the physical role of such devices is still poorly understood. Following our previous 

work on this problem, we address the dynamical behavior of the string/body/wolf-eliminator coupled system, which 

is studied here in a more systematic manner, both theoretically and through experiments performed on a XIXth 

century cello. We briefly recall our fully coupled model for this problem, and then perform extensive hand-bow 

experiments, as well as illustrative computations, which show the effectiveness of this wolf-eliminator as a function 

of the device mass and location along the dead side of the string. This experimental and numerical work contributes 

to clarify the functioning of this anti-wolf device and provides guidelines for an effective use. 

INTRODUCTION 

String players are well aware of a conspicuous annoying and 

highly unmusical phenomenon, which arises most often with 

cellos – frequently with the best instruments – which is the 

so-called “wolf note”. This emerges when the played string 

length is such that the sounding note approaches the 

frequency of a particular low-damped body mode. Physically, 

the resulting warbling sound – often compared to a wolf 

howling – stems from the severe interaction between the 

string and the body vibrations, coupled at the instrument 

bridge.  
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Figure 1. Experimentally recorded cello bridge vibration 

resulting from a wolf note, for a bowed  G string fingered at a 

position approximately L/3 from the bridge. 

 

Then, as shown in Figure 1, a low-frequency beating 

pervades the system response, while energy transfers from 

the string to the body and back. However, real physics are 

more complex than this basic description suggests, as the 

system is subjected to the highly nonlinear bow/string friction 

excitation mechanism. 
 

 

Figure 2. Typical anti-wolf device, mounted on a cello G 

string between the bridge and tailpiece. 

Since many years ago, instrument builders found that adding 

a small auxiliary mass on the so-called “dead” side of the 

string (between bridge and tailpiece), as pictured in Figure 2, 
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often inhibits the wolf phenomenon. However, the tuning of 

such “wolf-eliminators” – e.g. choosing their optimal mass 

and best location – is a laborious trial-and-error procedure. 

Furthermore, their actual effectiveness is often erratic, as the 

physical role of such devices is still poorly understood.  

Theoretical and computational studies on the wolf note 

started in the late 70s, with the pioneer work by McIntyre, 

Schumacher and Woodhouse – see McIntyre & Woodhouse 

(1979) and McIntyre et al. (1983). In their work, coupling 

with the body dynamics was simulated by implementing the 

dynamics of a single body mode in their wave-reflection 

function at the bridge-side boundary of the string. They thus 

achieved numerical simulations which successfully displayed 

the basic features of wolf notes. Experiments on this problem 

are also documented in a few papers, for instance Gough 

(1980) and Puaud et al. (1991). Although studies on the wolf 

note became less fashionable, we believe that several 

important aspects of this problem are still insufficiently 

understood. The manner in which anti-wolf devices affect the 

dynamics of the string/body coupled system constitutes one 

such aspect.  

Following our recently published theoretical and 

experimental work on string/body coupled dynamics – see 

Inacio & Antunes (2008) and Inacio et al. (2008) – we 

present in this paper systematic hand-bow experiments, 

performed on a XIXth century cello. These tests show the 

effectiveness of this type of wolf-eliminator – or lack of it – 

as a function of the device mass and location along the dead 

side of the string. The experimental results are then discussed 

in the light of our computational model of the bowed string, 

fully coupled to the body dynamics and to the anti-wolf 

device.  

We briefly recall our approach for achieving time-domain 

numerical simulations for this problem, which encapsulates a 

dynamical model of the cello actually tested. In contrast to 

the computational technique developed by McIntyre, 

Schumacher and Woodhouse, our computational method 

enables a rich dynamical model of the instrument body, 

through the inclusion of many body modes. Furthermore, our 

approach also enables the modeling of anti-wolf devices, 

because the dynamics of the “dead-string” region are also 

accounted in our model. 

The illustrative computations provided enable a detailed 

study of the friction-excited wolf-note regimes of the 

string/body/eliminator system, including the actual motions 

of the “dead” side of the string and of the anti-wolf masses. 

We present computations using several wolf-eliminator 

masses and mounting locations, which help to elucidate the 

dynamical behavior of these devices, the manner in which 

they affect the string/body coupled motions and their ultimate 

effectiveness as “wolf-killers”. 

COMPUTATIONAL MODEL 

General approach 

As in our previous work, a modal formulation for both the 

string and the instrument body is used. This enables a very 

“physical” assembling of the various ingredients, which 

constitute the fully coupled model of the 

string/body/eliminator. More specifically, as illustrated in 

Figure 3: 

- The string is described in terms of the transverse modes 

pertaining to the full length between the tailpiece and the nut. 

Their frequencies are therefore lower than those of the “life” 

string length, between the bridge and the nut. Whatever the 

note played, the modal basis used is always the one 

pertaining to the full-length free string. Both ideal (pure 

harmonic) real (inharmonic) strings can be modeled with 

similar ease. 

- The body is modeled by its modal properties, as identified 

through impact tests at the instrument bridge. The properties 

of these modes thus reflect the overall dynamical behavior of 

the body, including damping from all possible dissipation 

mechanisms. 

- Coupling between the string and the body is achieved using 

a penalty formulation, in order to enforce a near-identical 

motion of the string and the body at the bridge contact 

location. 

- The wolf eliminator is modeled as a point mass, which is 

coupled to the string through a (more or less) flexible damped 

fixture. This, also, results in a penalty formulation when 

coupling the eliminator and the string dynamics at some 

location in the “dead” side of the string. 

- Additionally, we provide a manner of playing any note by 

constraining the string at any given location by an “artificial 

finger”, in order to shorten the “active” string length. Again, 

this is implemented using a penalty formulation. As pointed 

before, the modal basis used is always the one pertaining to 

the full-length free string. This approach enables, in 

particular, the playing of glissandi without introducing any 

numerical artifacts, which proved very convenient for the 

present study. 

- For the purposes of this work, a basic Coulomb-type 

friction model is used. Actually, all other aspects of our 

computational model may be easily combined with a more 

refined friction model, for instance the thermal approach 

developed by Smith & Woodhouse (2000), therefore this 

does not constitute a limitation. 

 

 

Figure 3. Basic scheme of the string/body/eliminator coupled 

system, implemented in our computational modal approach. 

Upper plot: first mode of the string modal basis; Lower plot: 

“finger” control of the string length and played frequency.  

These various aspects will now be detailed in mathematical 

terms. 

String and body dynamics 

Consider an ideal string of length L , linear density  and 

dissipation coefficient  , subject to a constant axial tensile 

force T  and a force distribution ( , )F x t . The small-

amplitude transverse motion   of the string is described by the 

classic damped wave-equation: 

  
2 2

2 2
,s s s

y y y
T F x t

t t x


  
  

  
m  (1) 
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where the wave speed is given by 
2

/c T m . Any solution 

of equation (1) can be formulated in terms of the string modal 

parameters: for modeshapes normalized at unitary maximum 

values modal masses are given as / 2
n

m Lm ,  n . Other 

modal parameters are the circular frequencies 
n

n c L  , 

damping values 
n

  and mode shapes ( ) sin( )
n

x n x L  , 

with 1, 2, ...,n N . The order N  of modal truncation is 

problem-dependent and must be asserted by physical 

reasoning. On the modal space the forced response of the 

damped string is formulated as: 

           ( ) ( ) ( ) ( )
S S S S S S S

M Q t C Q t K Q t t    (2) 

where  
1

Diag( , , )
NS

M m m ,  
1 1 1

Diag(2 , , 2 )
N N NS

C m m     

and   2 2

1 1
Diag( , , )

N NS
K m m   are the matrices of modal 

parameters,  
1

( ) ( ), , ( )
T

NS
Q t q t q t  and  

1
( ) ( ), , ( )

T

NS
t t t     

are the vectors of modal responses and generalized forces, 

respectively. The damping values 
n

  are usually identified 

from experiments. The modal forces  ( )
S

t  are obtained 

by projecting the external force field on the modal basis: 

 
0

( ) ( , ) ( )  , ( 1, 2,..., )
L

n n
t F x t x dx n N    (3) 

The physical motion at any point of the string is computed 

from the modal amplitudes ( )
n

q t  by superposition: 

 

1

( , ) ( ) ( )
N

n n

n

S
y x t x q t



  (4) 

and similarly concerning the velocities and accelerations. For 

given external excitation and initial conditions, the previous 

system of equations can be integrated using an adequate 

time-step integration algorithm. 

Note that, although (2)-(4) obviously pertain to a linear 

formulation, nothing prevents us from including in ( )
n

t  all 

nonlinear effects arising in the system. Accordingly, the 

system modes become coupled by the nonlinear effects. 

Explicit integration methods are well suited for the friction 

model used here. In this implementation, we used a simple 

Velocity-Verlet integration scheme. 

For the present case, the external force field ( , )F x t  is due 

to: (a) the excitation friction force 
,

( , )
s a c

F x t  provided by the 

bow, which we will model in this paper as a single hair bow, 

although we can easily introduce excitation by a bow of finite 

width – see Inacio (2002); (b) the interaction force ( , )
b b

F x t  

between the body and the string at the bridge; (c) the 

interaction force ( , )
w w

F x t  between the wolf eliminator and 

the string; (d) the interaction force ( , )
f f

F x t  between the 

finger and the string at the fingerboard (see Figure 3). 

The response of the body of the instrument can be 

represented by a simplified modal model: 

          ( ) ( ) ( ) ( )
B B B B B B B

M Q t C Q t K Q t t     (5) 

where  
B

M ,  
B

C  and  
B

K  are the matrices of the body 

modal parameters,  ( )
B

Q t  and  ( )
B

t  are the vectors of 

modal responses and generalized forces, respectively. The 

modal forces  ( )
B

t  are obtained by projecting the 

string/body coupling force ( , )
b b

F x t  on the body modal 

basis. The modal parameters are identified from a single 

transfer function measurement at the bridge. This fact leads 

to a requirement that the modal mass matrix should be 

normalized by postulating, for instance, that all modeshapes 

be unitary at the bridge location. The physical body motions 

at the bridge are then computed from the modal amplitudes 

by superposition. 

The coupling between the string and the body of the violin 

arises from the bridge/string contact force ( , )
b b

F x t  which is 

used in the previous equations. Following Inacio et al. 

(2008), we introduce a penalty model for this interaction by 

connecting the string to the bridge at location 
b

x  through a 

very stiff spring (with a damper to minimize residual local 

oscillations). Then the force exerted by the body on the string 

is given as: 

 
 

 

( , ) ( , ) ( , )

( , ) ( , )

b b BS B b S b

BS B b S b

F x t K y x t y x t

C y x t y x t

 

 
 (6) 

where 
BS

K  and 
BS

C  are respectively the (high) stiffness and 

damping coupling coefficients between the body and the 

string at the bridge, ( , )
S b

y x t  and ( , )
S b

y x t  are the 

displacement and velocity of the string at the bridge, 

( , )
B b

y x t  and ( , )
B b

y x t  are the displacement and velocity 

of the body at the bridge. Obviously, the same force (6) with 

opposite sign is exerted by the string on the body.  

Wolf eliminator dynamics 

The preceding computational strategy is easily extended to 

deal with wolf eliminators of the type shown in Figure 2. 

These are simply modeled as a mass 
w

M , with dynamics: 

 ( )
W W w

FM y t  (7) 

which is coupled to the string motion at location 
w

x , using a 

penalty formulation of the same type as (6). Then, the force 

exerted by the string on the eliminator is: 

 
 

 

( , ) ( , ) ( )

( , ) ( )

w w WS S w W

WS S w W

F x t K y x t y t

C y x t y t

 


 (8) 

while an identical and opposite force is exerted on the string 

by the device. 

The coupling coefficients 
WS

K  and 
WS

C  depend on the 

internal structure of the wolf eliminator. A common type of 

wolf eliminators is designed such that the mass is directly 

applied to the string. Then 
WS

K  will be high and 
WS

C  low 

(typically of the same order of 
BS

K  and 
BS

C ). However, 

some wolf eliminators are coupled to the string through a 
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rubber nucleus. Then 
WS

K  will be much lower and 
WS

C  

much higher than in the preceding case. 

Finger control of the playing frequency 

Introducing a “finger” to control the playing frequency is 

even simpler than previously described. At the finger location 

f
x , a nearly zero displacement is imposed, again using a 

penalty approach. The finite width of the finger is modeled 

by applying that such constraint at a number of points along 

the string – in the present case we used 3 points, at locations 

1
2

f f f
Wx x  , 

2f f
x x  and 

3
2

f f f
Wx x  , 

where 
f

W  is the assumed finger width. The coupling forces 

exerted on the string by the “discretized” finger are given as: 

 1, 2, 3( , ) ( , ) ( , ) ;
f f FS S f FS S fj j j j

jF x t K y x t C y x t    (9) 

where 
FS

K  and 
FS

C  are empirical stiffness and damping 

coupling constants. 

Bow excitation 

The friction force arising between the string and the bow hair 

at the contact location 
c

x  of the string is given by: 

 

( , ) ( ) sgn( ) ; if 0

( , ) ; if 0

N

s c d c c c

N

a c S c

F
F x t y y y

b

F
F x t y

b





  

 







 (10) 

where 
N

F  is the normal force between the bow and the 

string, 
S

  is a “static” friction coefficient (used during 

surface adherence), ( )
d c

y  is a “dynamic” friction 

coefficient (used for sliding regimes) and b is the number of 

bow hairs used in the model. Here, the relative transverse 

velocity between the bow and the string is given by: 

1

( ) ( , ) ( ) ( ) ( ) ( )
N

c c bow n c n bow

n

Sy t y x t y t x q t y t


   
 
 
 
  (11) 

In this work we assume that ( )
d c

y  is a function of the 

relative bow/string velocity, and use the following model: 

  ( ) ( )expd c D S D cy C y        (12) 

where 
D

  is an asymptotic lower limit of the friction 

coefficient when cy   , and parameter C  controls the 

decay rate of the friction coefficient with the relative 

bow/string sliding velocity. the friction model (12) can be 

readily fitted to typical experimental data, by adjusting the 

empirical constants 
S

 , 
D

  and C . 

Computation of frictional forces is a delicate matter, often 

leading to numerical difficulties, in particular when dealing 

with stick-slip dynamical regimes. Details on the numerical 

implementation of the above friction formulation are 

provided in the paper by inacio et al. (2008). 

EXPERIMENTAL SET-UP AND PROCEDURE 

Experimental set-up 

This study was conducted on a German cello of the 19th 

century, which displays a “strong” wolf note when the G3 

note is played, at approximately 196 Hz. The wolf note 

occurs on both the C and G strings and seems more 

prominent on the C-string.  

During testing, the cello was in the vertical position, clamped 

by the neck to a rigid support with the endpin fixed on a 

rubber stopper. An accelerometer B&K 4375 was glued to 

the bridge close to the C-string corner, as shown in Figure 4. 

Also, a laser vibrometer Politec PVD 100 was used to 

measure the “dead” string-side motion, pointed between the 

bridge and the tailpiece – the laser dot can also be seen in 

Figure 4. A sound level meter and a camera were also used, 

respectively to measure the radiated sound pressure and to 

analyze the hand-bowing technique. 

Five wolf-suppressors of two varieties were tested. They 

consist of a set of four solid brass masses of 5.3 g , 8.9 g , 

10.9 g  and 12.9 g , as well as a traditional brass cap with 

tightening screw and rubber core, the total mass being 14.9 g  

(see Figures 2 and 5). Each device was mounted at various 

locations on the “dead” side of the string, respectively at 

1.5 cm , 4.0 cm , 7.5 cm  and 11.0 cm  below the bridge. 

The measured signals were digitized using a Siglab 4-channel 

acquisition system and then analyzed.  

  

Figure 4. Set-up for the measurement of the bridge 

transverse dynamical responses and of the “dead” string-side 

motion. 

  

Figure 5. Typical wolf-suppressor devices. Left: set of solid 

brass masses. Right: mass with rubber core and tightening 

screw.  

Cello modal identification 

In order to obtain the modal parameters of the cello body, 

which are used in our numerical simulations, a detailed 
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modal identification of the instrument body was performed 

from a transfer function measured at the bridge. As illustrated 

in Figure 6, the bridge was impacted from the A-string corner 

side, using a force transducer (B&K 8200) attached to a 

pendulum, to ensure repeatability in the measurements. The 

bridge response was measured at the C-string corner side, 

using the laser vibrometer and accelerometer. Measurements 

were performed keeping the strings of the instrument 

tensioned and in-tune but damped with a light cloth. 

 

  

Figure 6. Experimental modal identification of the cello 

body through impact tests. 

Extraction of the modal frequencies and damping values was 

performed from the bridge impulse response, using our 

implementation of the Eigensystem Realization Algorithm 

(ERA), which is a powerful identification algorithm in the 

time domain, see Juang & Pappa (1985) or Juang (1994). The 

cello modeshapes are assumed real and the body modal 

masses were obtained from the measured transfer function, as 

discussed earlier, by postulating that the corresponding 

modeshapes are unitary at the bridge location. 

Test procedure for extracting wolf notes 

The cello was hand-bowed by one of the paper co-authors, a 

violin maker who also has a strong experience as a musician. 

The study was conducted on both the C and G strings, which 

are cored strings with linear density of 3
14 10 kg/m

  and 

3
6.6 10 kg/m

 , respectively.  

For each wolf suppressor mounted on a given string and at 

each specific location, the experiment consisted in bowing 

the string to detect if any wolf note arises. To do so, the 

player was allowed to change the control parameters - bow 

velocity, bow normal force, bowing contact point and finger 

position. However, at the present time, no instrumentation 

was used to precisely monitor any of the bowing parameters.  

Therefore, no control of these parameters was exercised 

during the tests. When finding a wolf note, the musician 

attempted to maintain the applied normal force and bow 

velocity constant, as much as possible. A guess of the bow 

velocity can then be achieved by analyzing the test movies, 

from a set of markers drawn on the bow.  

The bridge acceleration and the “dead” string velocity were 

digitized with a sampling frequency of 20 kHz , for recorded 

signals 4 sec  long. From the bridge displacement signal, the 

playing and beating frequencies were identified. The 

measurement illustrated in Figure 1 is a typical amplitude 

modulated waveform of the bridge velocity, characteristic of 

a wolf note, measured when bowing the G string. After each 

test, it was also asked to the player to report a subjective 

impression on the difficulty to extract a wolf note from the 

instrument, by using the terms “easy”, “difficult” or “no 

wolf”.   

EXPERIMENTAL RESULTS 

Modal identification results 

A thorough modal identification of the cello body was 

performed on the impulse response ( )
b

h t  obtained from the 

bridge velocity signal. It was carried out in the 

20 ~ 1500 Hz  frequency range of the corresponding transfer 

function ( )
b

H  . Results show the existence of one main 

resonance at approximately 196 Hz , with relatively low 

damping. It is expected that this body mode will probably be 

responsible for the wolf note. 

 

Figure 7. Measured (blue) and synthesized (red) impulse 

response (upper plot) and the corresponding transfer function 

amplitude (middle plot) and phase (lower plot), for the cello 

body. 

The measured and synthesized (from 71 identified modes) 

impulse response and transfer function of the cello body are 

shown in Figure 7. Table 1 presents the modal parameters of 

the body, for several modes in the vicinity of the prominent 

resonance.  

Table 1. Body modal frequencies and damping values in the 

vicinity of the most prominent body resonance. 

Frequency (Hz) 152.1 167.3 195.9 202.0 225.7 

Damping (%) 0.4 6.9 1.3 1.6 2.6 
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Stability charts of the wolf notes 

Figures 8 and 9 present the wolf-occurrence maps obtained 

from the hand-bow experiments for the set of solid brass 

masses, mounted at the various locations on the C and G-

strings respectively. The black dots locate the specific tested 

configurations (e.g., the wolf eliminator masses used and 

their attachment locations). A color scheme is used for 

highlighting the occurrence nature of the wolf note. The red 

and yellow colors stand for the cases for which it is 

respectively “easy” and “difficult” to establish a wolf note. 

The green color is used when “no wolf” has been obtained 

whatsoever, after many attempts. Also, the values of the wolf 

note frequencies and of the corresponding beating 

frequencies are displayed on the plots. 

Results obtained for the C string shows that none of the 

tested solid mass eliminators suppressed the wolf tones, as 

depicted in Figure 8. The same conclusion applies when 

testing the wolf-suppressor with rubber core for all the tested 

locations. Thus, for the C string – which displays the most 

severe wolf note on the tested cello – no convenient solution 

was found to inhibit the wolf phenomenon. This feature 

confirms the erratic effectiveness of the devices and the 

laborious trial-and-error procedure to completely prevent the 

wolf phenomenon. At least, use of the devices sometimes 

render more difficult to maintain a wolf note. Actually, it 

appears that the closer to the bridge the wolf-suppressor 

location, the harder is the emergence of a wolf note. These 

test results are in agreement with the violin maker 

experience. 

Somewhat surprisingly, Figure 8 also reveals that the wolf 

note frequency can change, as a result of the wolf suppressor 

additional mass, as well as of its location. For instance, there 

is an evident shift in the wolf-note frequency for solid masses 

mounted close to the bridge as seen in Figure 8. A plausible 

explanation could be that, due to the presence of the mass and 

the complexity of the body modal responses, the string 

vibration couples to other mode of the body cello. From 

Table 1, it seems plausible that the mode at 202 Hz , which 

has also small damping compared to other modes, would be 

responsible for the wolf note measured around 207 Hz . It 

should also be noted that for such situations, the wolf note is 

produced over a limited range on the fingerboard (less than 

one semitone) and that the musician denotes difficulties in 

obtaining the wolf note. Also, when the emergence of the 

wolf note is reported as “easy”, the unstable frequency is 

found close to the original wolf note frequency and usually 

occurs over consecutive positions on the fingerboard 

covering more than one tone. Looking at the beating 

frequencies, it seems that the more difficult is the emergence 

of the wolf note, the lower the beating frequency. 

Figure 9 shows the stability map obtained for hand-bow 

experiments pertaining to the G string. Interestingly, two 

configurations prevent the wolf note efficiently. It occurs for 

the 5.3 g  mass, when located near the bridge, in the first two 

positions (1.5 cm  and 4.0 cm ). The mass with rubber core 

also appears to be a good solution to suppress the wolf 

phenomenon when mounted close to the bridge. It should be 

noted that for the other locations, while a wolf note still 

occurs with the rubber mass, it is quite difficult for the 

musician to maintain the wolf note when the eliminator is 

located on the first three positions below the bridge. 

Figure 9 also shows that locating the wolf suppressor close to 

the bridge has a strong influence on the value of the wolf 

frequency, as noted before for the C string. Actually, when 

the solid masses 8.9 g , 10.9 g  and 12.9 g  are located close 

to the bridge, the wolf note frequency is significantly lower 

(between 155 Hz  and 168 Hz ). From Table 1, it seems 

possible that, in such cases, the string vibration is influenced 

by the body mode identified at 152.1 Hz . Also note that, for 

these configurations, the emergence of the wolf note is 

reported as “easy”. 

 

Figure 8. Wolf-occurrence map for the C string. The wolf 

note frequencies (black) and beating frequencies (blue) are 

shown as a function of the mass and location of the wolf 

suppressor.  

 

Figure 9. Wolf-occurrence map for the G string. The wolf 

note frequencies (black) and beating frequencies (blue) are 

shown as a function of the mass and location of the wolf 

suppressor.  

ILLUSTRATIVE COMPUTATIONS 

Bowing simulations were performed for both the C and G 

strings, with fundamental frequencies of 65.4 Hz  and 

97.9 Hz , respectively. The simulated cello strings have a 

total length of 0.83 m  from the nut to the tailpiece, with an 

“active” length of 0.70 m  from the bridge to the nut (the 

“dead” side is therefore 0.13 m ). For simplicity, the strings 

were assumed perfect, so that natural frequencies are 
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harmonic. An average modal damping value of 0.1 %  was 

used for all modes. In order to achieve adequate 

computational convergence, 80 string modes were used. The 

body of the cello was simulated using a modal basis of 45 

modes, covering a frequency range up to 1000 Hz . Because 

of the explicit nature of the integration algorithm used, a 

small time-step 
6

10 sect


   was adopted. 

All computations reported here were performed using the 

friction model (10), with the sliding law (12). Friction 

parameters are 0.4
S

  , 0.2
D

   and 5C  . 

Furthermore, the following playing conditions are used: 

Normal bow force 1 N
N

F  , tangential bow velocity 

0.1 m/sbowy   and bowing location 0.040 mcx   from the 

bridge. Finally, as in the real-life experiments, it proved quite 

useful to perform computations by simulating a slow 

( 10 sec
Slide

T  ) finger-glissando of a few centimetres along 

the string, in order to cover the possible wolf frequencies. 

Most of the computations covered the playing range 

175 ~ 215 Hz . Beyond the typical signal processing of the 

computational results, we also performed estimates of the 

time-varying playing frequencies, which were identified 

using a zero-cross counting technique, within a moving 

window 0.1 sec  wide. 

 

Figure 10 shows the results obtained for an upward glissando 

on the C string, when no additional suppressor is used. In the 

complete time-domain response of the bridge, a wolf note 

clearly emerges between the finger positions 

0.379 ~ 0.367 m
f

x , with a vibration frequency in the 

range 186 ~ 196 Hz . This result gives some confidence in 

the computational approach developed. In the lower plots, the 

details of the time-domain bridge responses show the usual 

Helmholtz regime (left plot), then a section of the wolf tone 

(center plot), as well as a low amplitude post-wolf regime 

(right plot). These show the complex dynamics of the bowed 

string, when strongly coupled to the body dynamics. 
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Figure 10. Time-domain bridge response for the bowed C 

string, with no wolf suppressor. Upper plot: complete 

glissando computation; Lower plots: details of the time-

domain responses. 

 

The results obtained when a mass of 8.9 g  is applied 

respectively at 7.5 cm  and 1.5 cm  from the bridge are 

shown in Figures 11 and 12. Beyond the time-domain bridge 

responses, these results are also illustrated with plots of the 

time-varying bridge frequencies. In Figure 11 one can notice 

the short initial transient, after which a typical Helmholtz 

regime arises, quickly leading to a wolf tone of increasing 

beating frequency. Notice that, in this case, use of the anti-

wolf device actually worsened the problem, by extending the 

frequency range of the wolf-note. 

At this stage, the dominant frequency is controlled by the 

first modal frequency of the string, which increases as the 

finger slides towards the bridge, in the range 182 ~ 196 Hz . 

It thus appears that, in the string/body coupled system, the 

string acts as the master subsystem and the body as the slave 

subsystem. As the finger keeps moving, the wolf note finally 

collapses and a higher-order regime of low amplitude settles 

for a while, which is dominated by the second and forth 

modal frequencies. Then, the response amplitude increases 

again, with the response frequency controlled by the first and 

second modal frequencies of the string.    
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Figure 11. Time-domain bridge response for the bowed C 

string, with a mass 8.9 g  located at 7.5 cm  from the bridge 

( 5.5 cm  from the tailpiece). Upper plot: complete glissando 

computation; Lower plot: time-varying dominant frequency. 

0 1 2 3 4 5 6 7 8 9
-0.02

-0.01

0

0.01

0.02

y
B
( 

x
b
,t

 )
 [

 m
m

 ]

Time [ s ]

0.3450.350.3550.360.3650.370.3750.380.3850.39
Finger position [ mm ]

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

Time [ s ]

F
r
e
q

u
e
n

c
y
 [

 H
z
 ]

 

Figure 12. Time-domain bridge response for the bowed C 

string, with a mass 8.9 g  located at 1.5 cm  from the bridge 

(11.5 cm  from the tailpiece). Upper plot: complete glissando 

computation; Lower plot: time-varying dominant frequency. 

 

The results in Figure 12, when the wolf-eliminator mass is 

moved close to the bridge, follow a similar general pattern. 

However the range of frequency leading to a wolf note is 

narrower than in the preceding example. On the other hand, 
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the frequency of the wolf note is higher, in the range 

190 ~ 200 Hz . It should be stressed that both features are 

qualitatively, and to some point even quantitatively, 

supported by the experimental results of Figure 8. 

Furthermore, these results also correlate well with the level of 

difficulty experienced by the musician to produce a wolf note 

in the corresponding experiments. 
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Figure 13. Time-domain bridge response for the bowed G 

string, with a mass 5.3 g  located at 1.5 cm  from the bridge 

(11.5 cm  from the tailpiece). Upper plot: complete glissando 

computation; Lower plot: time-varying dominant frequency. 

As a final illustration, Figure 13 shows the result obtained 

when the G string is simulated, when an anti-wolf device of 

5.3 g  is attached at 1.5 cm  from the bridge. It can be seen 

that, for such computation, no wolf tone is ever generated – 

and this also is in agreement with the experimental results of 

Figure 9. Nevertheless, things are more complex than they 

appear, for in this case the numerical results display a 

response regime which is at “double-frequency” most of the 

time, in contrast to the basic Helmholtz regime which is most 

typically obtained. 

CONCLUSION 

In this paper we presented a series of hand-bow experiments 

performed on a cello, in order to characterize the occurrence 

of wolf note responses, their frequencies, as well as their 

relationship to the instrument body modes. These features 

were addressed in a systematic manner, in relation with the 

masses and attachment locations of a popular – but ill 

understood – “wolf-eliminator” device.  

On the other hand, these experimental results were 

confronted with computations performed using a recently 

developed model for the highly nonlinear vibrations of 

bowed cello strings coupled to the instrument body, which 

incorporates as well the dynamics of the wolf-eliminator 

device. These computations display a generally satisfactory 

correlation with the experimental results. Furthermore, they 

enable a detailed analysis of the fully coupled system, which 

ultimately will lead to a better understanding of the wolf 

suppressing devices and their erratic effectiveness. 
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