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ABSTRACT

A theoretical framework for initial transients of musical instruments is presented for string-body, reed-air column and
bow-string interactions. The time dependent amplitudes of the frequencies present in the two coupled systems are
written as sums of phase relations of complex amplitudes of both, the system itself and the coupled system. For the
steady-state parts some terms cancel because of their limits summing to zero explaining the take-over of one system by
the other, like the forced oscillation of a violin body by its string frequencies. For the initial transients the equation sys-
tems consist of additional terms explaining the complex time-dependent behaviour of the initial transients. These terms
formulate the temporal development of the amplitudes of additional frequencies during the transients. This enables a
simple and real-time simulation of the transient time series. Additionally, two main reasons are found for the slaving of
one system by the other in the discussion of zero limit sums of the steady-state phase, which are the difference in damp-
ing of the two systems and the difference in dimensionality. So e.g. the one-dimensional string with only two reflection
points and low damping is much more capable to force the body to the strings frequencies as the three-dimensional
body with strong damping and a complex geometry with multiple wave reflection points.

INTRODUCTION

Many musical instruments consist of at least two coupled oscil-
lating systems, e.g. string - body, bow - string, or reed - air col-
umn interactions. Under normal playing condition, one system
takes over the other, with guitars the string tells the body how
to sound, with reed instruments it is the air column determin-
ing the reed frequency ect. This is normally seen as a generator
- resonator coupling. Still, with some instruments the generator
tells the resonator how to vibrate (like with guitars) while with
others, the resonator dominates the generator (like with reed
instruments). Also, the important initial transient phase of mu-
sical sounds is determined by the initial struggling of the sub-
systems until one wins the game. This paper tries to develop a
theoretical framework for this coupling to aim at a description
of the initial transient phase as well as explaining the steady-
state take over of one system by the other.

The basic idea of this framework is taken from Synergetics
(Haken 1983). In its most simple mathematical formulation

ḟ1 = α f1 + k1 f 3
2 (1)

ḟ2 = β f2 + k2 f1 (2)

the temporal change ḟ1,2 of the time series f1,2 depend on the
time series themselves with dampings α and β and on the
other time series linear or nonlinearly with coupling strengths
k1,2. The astonishing emergent behaviour of systems described
by a temporal development of only first order derivative is ex-
plained there by both, the nonlinear coupling and the different
damping. So when α À β then

ḟ1 = α f1 + k1 f 3
2 (3)

ḟ2 = k2 f1 , (4)

and f2 only depends on f1. Note, that the nonlinearity is not
necessary for the reasoning of taking over (or synchronizing)
of one system by the other. Still, nonlinearities can play a cru-
cial role in other cases.

As vibrating systems are normally described by the wave equa-
tion of second order or through bending motion of fourth or-
der derivatives, the Synergetic formulation above was not often
used in the field of vibrational theory. Indeed, a second order
derivative shows complex behaviour easily, while a first-order
one as a reaction-diffusion type normally only shows exponen-
tial decay.

Still, musical sounds consist of partials (steady or changing)
with amplitudes changing in time. This temporal change of the
amplitude of one paratial depends upon itself with a certain
damping and upon energy support from another system with a
coupling strength. From this standpoint, the Synergetic equa-
tion system perfectly fits the problem and we want to discuss
it in the sections below with three examples, a string - body, a
bow - string and a reed - air column interaction.

In the literature the problem has been discussed from several
standpoints. Aschoff was wondering, why with the saxophone
the resonator dominates the generator (Aschoff 1936) and finds
the reason in the damping of the reed being much stronger than
that of the air. Woodhouse formulates the bow-string interac-
tion as an example of chaos theory with the strong nonlinearity
of the stick - slip interaction (Woodhouse 1995). Fletcher dis-
cusses mode locking of harmonic musical systems (air column,
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strings), where because of a complex geometry slight devia-
tions from a perfect harmonicity would be expected but where
instead a perfect harmonic spectrum is found. Abel discusses
locking of close frequencies through air with organ pipes (Abel
et al. 2006), as Trendelenburg had found before (Trendeleburg
et al. 1938, ’Mitnahmeeffekt’). A huge body of literature about
nonlinear behaviour of musical instruments is known, too, which
is beyond the scope of this paper. Indeed nonlinearities are not
always of crucial importance when it comes to the slaving of
one subsystem by the other (Aschoffs explanation is linear, the
organ pipe ’Mitnahmeeffekt’ is linear, too). So the theory of
forced oscillation (see e.g. Fahy 2007) will serve in some cases.
So this paper tries to examine how far we can get with a syner-
getic formulation, especially in terms of initial transients.

STRING - BODY INTERACTION

Stringed instruments like guitars, violins, pianos, ect. are built
of a generator, the string(s) and a resonator, a soundboard or
instrument body. Indeed, this naming convention is only the re-
sult of a complex interaction between those two parts resulting
in the string taking over the body to vibrate with the strings
frequencies. So the string takes the body over, which is nor-
mally denoted as a resonance phaenomenon. But still the body
does also act on the string. If a Flamenco guitarist is playing
a toques, a knocking on the guitar body, the body would be
the generator and the strings could be the resonators. Indeed,
after the knocking sound is over, we hear, that the strings have
been driven by the knocking which we can clearly hear. But
this means that again the strings, driven by the body are then vi-
brating with their eigenfrequencies. Furthermore, they are then
forcing the body to move with their frequencies, otherwise we
would not hear the strings, they themselves do not have enough
radiation area to be heard, the sound we hear is the vibrating
body.

So why is the string always taking the body over, forcing it
to go with the strings’ frequency? To answer this question, we
first need to look at the details of the string - body interaction.

• We assume a linear force - force interaction between the
string and the body

• Both linear systems are coupled via a point on the body
and a point on the string.

• The string has a damping α which is much less than the
damping β of the wooden body.

• The string is one-dimensional.
• The body is three dimensional.

When formulating the system in terms of a simplified equation
system we can write

Ȧs = αAs + k1Ab

Ȧb = βAb + k2As .

Here, As( f ) and Ab( f ) are the amplitudes (or energies) of
one frequency f on the string and body respectively. This is
changed in time, denoted by a dot representing a first order
derivative in time, because of a damping α and β within each
system and because of the other system via the point - point
connection of the string on the body with coupling constants
k1 and k2. Note, that the damping constants α and β are used
as the strength of the system to act upon itself, so a high damp-
ing means small values of these parameters.

Indeed, to make the system complete we would need to include
the energy transfer to the other system on the causing system
as energy loss like

Ȧs = αAs + k1Ab− k2As

Ȧb = βAb + k2As− k1Ab .

To avoid confusion with too many terms we avoid this in the
following. It is not effecting the discussion about the coupling.
Still we need to insert it in the end again for completion.

The most easiest way to make one system take over the other
is if

α À β . (5)

Then we have

Ȧs = αAs + k1Ab

Ȧb = k2As ,

and the change of the amplitude of the body is only determined
by the string. Therefore, if one frequency is not present in the
string than it is not in the body. On the other hand, each fre-
quency which is in the string will be present on the body. Then
also the energy transfer from the body to the string via k1 is
only present with frequencies already in the string. The string
has taken over the body completely.

As with stringed instrument the condition above always holds,
we have a first, rough but very intuitive and simple reasoning
for strings forcing the body and not vice versa.

Let us make the discussion more elaborate by changing to the
spatial domain and first assume the body to be a plate, further-
more, if it is endless, without boundaries, and we have plucked
the string, then the string is ’knocking’ on the body resulting
in a travelling wave going into all directions around the driving
point. This is a free-field condition, the plate has a continues
resonance spectrum including all possible frequencies. Then
we can write

Ȧs = αAs

Ȧb = k2As .

As there are no reflections of the outgoing wave on the plate
back to the driving point, the second term of the string equa-
tion vanishes. The equation system is most simple with a string
vibrating on its own and the endless plate going with the string
frequencies.

Now if we add boundaries to the plate we get reflecting walls
which send energy back to the plate. From here on we need
to include the phase relations of the waves going out from the
driving point and coming back like we would do when using
the d’Alambert solution for the string, where two travelling
waves going into opposite directions form a standing wave.
The equation system then is

Ȧ∗s = ∑e−1/αti A∗i + k1A∗b

Ȧ∗b =
N

∑
i=1

e−1/β ti A∗i + k2A∗s .
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Here we sum over all reflecting waves with complex ampli-
tudes A∗i and different times ti determined by the different
lengths the waves have to travel. The exponential term decays
the wave according to the damping of the plate and the time the
wave travelled. The same holds for the string with the restric-
tion that we know that only two reflection length can occur.
Still each new wave acting on the string will travel on it as
long as it is decayed and so we need to sum all over them, too.
As both equations also show a dependency upon the other via
the coupling parameters k1 and k2, we need to determine how
those interact with the reflected waves on the geometries.

We start with examining the first term of the body equation and
find that for arbitrary complex phases of A∗i

lim
N→∞

N

∑
n=i

e−1/β ti A∗i = 0 . (6)

The reason is that for each amplitude A∗i with a certain phase
an amplitude A∗j with an opposite phase exists. For such a case
the coupled equation system would read

Ȧ∗s = ∑e−1/αti A∗i + k1A∗b
Ȧ∗b = k2A∗s ,

and we would arrive at the same situation as with the free-field
case. The string would take over the body completely.

If we restrict the amount of reflections on the body to a finite
number N we find that the cancellation is not complete and
eigenfrequencies with associated eigenmodes exist on the body
as is the case with real instrument bodies.

Before examining this further we first have a look at the other
case of the string with only two reflections from both ends of
the string. So instead of the arbitrary sum case we can write

lim
N→∞

N

∑
i=1

e−1/αti A( f )∗s eı∆ti =

{
= 0 for f 6= r f0
= Amax for f = r f0

(7)

with r = 1,2,3... (8)

Here f0 is the fundamental frequency of the string and ∆t is the
time interval once around the string. At first, both results seem
to be the same, the first term of each equation vanishes. Still
there are two differences.

First, the reason for the vanishing of the body term is because
of multiple reflections spatially within a short time span, while
the vanishing of the string term is because of multiple reflec-
tions over a long time span as only two reflection points are
present.

Secondly, the damping of the body is much more than that
of the string and so each new impulse onto the body is much
stronger than the waves already travelling there. In the string
case with lower damping, the new waves meet others still strong.

From this discussion, in the string equation we can include the
coupling term into the limit discussion like

lim
N→∞

N

∑
i=1

e−1/αti A( f )∗s eı∆ti + k1A∗b =

{
= 0 for f 6= r f0
= Amax for f = r f0

(9)

with r = 1,2,3... .
(10)

We cannot do this with the body equation that easily as each
new and strong impact of the string onto the body does not find
a strong wave on the body cancelling it out. The cancellation of
waves in the body is much more short-term because of both, the
large damping and the complex geometry with many reflection
points.

Now we can take up the discussion of the body again and find
a similar behaviour for the eigenvalues of the body like

lim
N→∞

N

∑
i=1

e−1/αti A( f )∗beı∆tbodyi =

{
= 0 for f 6= fbody

= Amax for f = fbody

(11)

with r = 1,2,3... .
(12)

So the eigenvalues fbody and their periodicities ∆tbody = 1/ fbody
may be present in the body spectrum but much more short liv-
ing as they are damped much stronger. Note that we do not
include the string coupling to the limit sum as this is too strong
to cancel out with the body reflections.

So in the end we have the equation system two times, one for
N → ∞, the steady-state of a tone

Ȧ∗s = αA∗s (r f0)

Ȧ∗b =
N

∑
i=1

e−1/αti A( f )∗beı∆tbodyi + k2A∗s (r f0) ,

and one for the case of small N, the initial transient phase

Ȧ∗s =
N

∑
i=1

e−1/αti A∗s ( f )eı∆ti + k1A∗b

Ȧ∗b =
N

∑
i=1

e−1/β ti A∗i +
N

∑
i=1

e−1/αti A( f )∗beı∆tbodyi + k2A∗s .

The first equation system states, that the string determines the
vibration of the body, while not be effected vice versa. The
eigenmodes of the body are still present in the steady-state
equation for the body motion although they are no longer sup-
ported by the string and have died out fast. Still they are present
in the case where

fbody ∼ r f0 , (13)

where a string frequency is next to a body mode. In this case
the body is acting like in resonance adding energy to the body
vibration. Note that this resonance phaenomenon is not neces-
sary to cause the body to vibrate with the string frequency! The
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second term, the string impact onto the body, is the direct in-
put of the string to the body, the ’knocking’ of the string onto
the body. This periodical knocking which formes the harmonic
overtone structure is the first wave distributed onto the body
or soundboard. This first wave causes the body to radiate even
if no body resonance is there at this frequency. This is often
found with guitars in the low register between the Helmholtz
resonance around 100 Hz and the first body mode at around
200 Hz. Many string fundamentals lie between these two body
resonances and would not be radiated strongly when resonance
would be the only reason for radiation. Only the second term
in the body equation, the first impact which is much stronger
than the distributed waves already present on the body leads
to strong radiations of these string frequencies. So for the first
wave of the string onto the body at each string cycle, the body
is close to the free-field condition.

The body equation also include the body motion for waves
which are no eigenfrequencies of the body. This is necessary,
as for very small N all frequencies of the very first impulse of
the string onto the body are present in the sound. It is indeed the
case with stringed instruments that the very first attack phase
shows a broad spectrum.

Also, the strings frequencies r f0 are present within the initial
transient case, too, as the sum does not cancel them out. Indeed,
string frequencies start right with the first attack in stringed
instruments sounds.

The equation for the initial transient also determines the tem-
poral development of the eigenfrequency amplitudes of the res-
onating body during the attack phase. Those can easily be cal-
culated by stepping through different N = 1, 2, 3,...

Also for very low eigenfrequencies of air modes in the body
the situation may be slightly like that of the string, e.g. with
the Helmholtz motion of air inside a guitar. It can be assumed
as quite strong, because the air shows only one phase and is
much less damped than the body. Indeed, in some spectra the
Helmholtz frequency is present throughout the tone, still it is
not as strong then as body resonances within the initial tran-
sient phase. These cases are covered by the ’resonance’ term
in the body equation of the steady-state system (see figures be-
low).

So we can conclude that there are two reasons for the string
forcing the body or soundboard of stringed instruments to go
with its frequencies not not vice versa:

1. The vibrating system with less damping takes over the
system with more damping.

2. The vibrating system with low dimensionality and there-
fore a small amount of wave reflection points takes over
more complex geometries with more reflection points.

Simple wins against complex, low damping against strong.

We have seen, that the coupled string - body system is not only
one of resonance but also one of self-organization. String fre-
quencies not present in the body spectrum are still radiated
strongly because of this feature. The nonlinearities normally
present in the coupling point is now present in the complex ge-
ometry of the ’resonance’ body causing many weak reflections
which are no longer able to work against the strong impact of
the string caused by its simple one-dimensional geometry. The
difference in damping is the second parameter necessary.

In Figure 1 and Figure 2 examples of body resonances as ap-
pear from the theory driven by a string with 300 Hz are shown.
The plots show, how a body resonance would react with its
amplitude, if it was really present in the body at a frequency ra-
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Figure 1: Body resonances driven by a string of 300 Hz pe-
riodicity as ratio of string to body frequency. Other than the
string frequencies which have a sharp attack (not shown here),
the body resonances come in smooth.
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Figure 2: Body resonances driven by a string of 300 Hz peri-
odicity as ratio of string to body frequency as in figure 1, here
single plots, scaling to maximum of each resonance amplitude.
Periodicities appear in a way known from real instrument be-
haviour.
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tio to the string frequency as indicated in the plots. Of course,
if the body frequency meets the string, it is resonating most
strongly. Note, that here only the body resonance part of the
theory is shown. The energy of the string acting upon the body
directly is then superposing. This part comes in immediately
with a sharp attack. The body resonances only come in smooth.
In Figure 2 the single resonances can be seen scaled to their
maximum amplitude. Here, oscillations appear in the ampli-
tudes as well known from real instrument sounds. The cause
of these oscillations are the phases cancelling or enhancing
each other with each new period of the string. Also note, that
even if the amplitude of the resonances are not strong, they are
mostly not zero. Still they are not strong enough to radiate a
string frequency here strongly. This is only appearing with the
forced oscillation part of the equation. The solutions can eas-
ily be used to simulate the initial transient of e.g. a guitar tone
in the presence of a harmonic overtone spectrum if the body
eigenfrequencies are known.

BOW - STRING INTERACTION

With bowed instruments, the interaction between the bow and
the string is a nonlinear one leading to a sawtooth motion with
normal playing pressure as discussed above. Within this regime
the string length determines the pitch of the played note. This
allows us to play tones with e.g. a violin by shortening or
lengthening of the string, by fingerings. When the bowing pres-
sure is beyond a threshold this pressure takes over and then
determines the pitch of the sound. This works very well with
cellos. When the pressure is very low a bifurcation scenario
appears ending in a noise regime.

Establishing one of the regimes during the initial transient of
the sound may go through different stages. This holds for most
of the hard attacks of the violin sound. Here a strong pressure
is used right from the start to get a scratchy sound. On the
other hand, certain soft attacks may establish the sawtooth- or
Helmholtz-regime at once.

When again using the amplitudes of frequencies as dependent
variables in a coupled equation system we can write two equa-
tions, one for the string and one for the bow-string point like

Ȧs = αAs + k1Ab

Ȧb = βAb + k2As .

Here As is the amplitude of a certain frequency on the string
and Ab is the amplitude of that frequency at the bowing point.
The string is acting upon itself with a damping α caused by
the strings internal damping and the energy loss to the radiating
body. The situation is different with the second equation for the
bow-string point. Here a Heavyside Θ function is used to repre-
sent the stick-slip behaviour of the bow. During sticking phase
the bow is acting upon this point and so Θ(γAb(p,v)) = 1. γ
includes the string parameters like rosin, bow width ect. In this
case the point is sticking to the string until a certain amplitude
or displacement is reached. So then β = Ab(p,v) with Ab(p,v)
being the amplitude of the string at which the bow is tearing-
off the string again. This depends upon the playing pressure p
and the playing velocity v. With bowed instruments the volume
of the tone is determined by the bow velocity, while the tone
color is changed by the pressure.

Additionally, the bow-string point is of course determined by
the string itself with a certain coupling constant k2 which in-
cludes the strength of the gluing rosin of the bow, the width of
the bow, and all parameters determining if the string is strong
enough to tear-off the bow from the string again. So k2 also

depends on the playing pressure as a stronger pressure weak-
ens the ability of the string to tear-off the bow again. If the
model is used with changing playing pressure, k2 is not a con-
stant anymore. As again this tear-off is either there or not we
need a Heavyside function to determine if a certain threshold
is reached.

As a last parameter, the coupling of the bow-string point upon
the string itself via k1 represents the ability of the bow point
to strengthen or weaken a frequency on the string. So we can
rewrite this coupled system as

Ȧs = αAs + k1Ab

Ȧb = Ab(p,v) Θ[γAb(p,v)]+AsΘ[k2As] .

We can distinguish three phases of the system.

Sawtooth motion

Here the amplitude of the bow-string point Ab is never get-
ting large enough that a tear-off is happening because of a very
large displacement of the string. Therefore Θ[γAb(p,v)] = 0 all
the time. In this case the equation system simplifies to

Ȧs = αAs + k1Ab

Ȧb = AsΘ[k2As] .

Clearly, the bow-string point amplitude Ab is only affected by
the string amplitude As and therefore the string itself deter-
mines the system. In this case the string length sets the pitch of
the tone and we can play notes using fingerings.

High-pressure regime

When the pressure is so high that the string is no longer able to
tear-off the bow from it two terms can be neglected. First, the
second Θ function is always zero. Secondly, Ab is very large.
Also, the damping of violin strings is normally quite strong
and so α is small. As the periodicity is large here the damping
is applied for a long time span. Last, the coupling k1 of the
bow-string point upon the string is strong. So we have

αAs ¿ k1Ab . (14)

Therefore the system reduces to

Ȧs = k1Ab

Ȧb = Ab(p,v)Θ[γAb(p,v)] .

The string is determined by the bow alone. It is forced to go
with the bow. The bow-string point is only determined by it-
self, no string influence is happening anymore. So the situation
is completely different compared to the sawtooth motion case,
where the string determined the pitch. Now the bow is giving
the system its frequency via the bowing pressure.

Low-pressure regime

If the bowing pressure is very low, both Θ functions appear in
the second equation. The pressure threshold for the bow term
is reached because with low pressure values the string easily
tears-off the bow. The string term is there as it is also easy for
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the string to tear-off the bow from it. As the time span between
two tear-offs is short, the low value of α does not play a crucial
role. The time for damping is not long enough to damp the
amplitudes very much. Also the influence of the bow-string
point on the string via k1 is present as it is in the range of the
influence of the string upon itself. So we can not neglect any
of the terms and have the complete system

Ȧs = αAs + k1Ab

Ȧb = Ab(p,v)Θ[γAb(p,v)]+AsΘ[k2As] .

This leads to very complicated patterns resulting in a noisy
sound within this regime. In normal instrument playing this
regime is not desirable and one would want to lower the pres-
sure threshold for this regime as much as possible to allow nor-
mal sawtooth motion with low playing pressures. This is nor-
mally done by using rosin. Rosin glues the string to the bow en-
larging the static friction of it. The tear-off caused by the string
via k2 and the tear-off caused by the bow via γ are physically
different. The string tears off because the amplitude peak trav-
elling around the string is reaching the bow point acting like
a small impulse on the glued string. This causes the tear-off
much easier than the force caused by displacement counteract-
ing the strong static friction of the rosin glued bow. So using
rosin causes

Ab(p,v)Θ[γAb(p,v)]¿ AsΘ[k2As] , (15)

and therefore enlarging the normal pressure regime to low play-
ing pressures values.

REED INSTRUMENTS

Aschoff was the first to discuss the question why a clarinet or
saxophone plays the pitch of the air column and not the one
of the reed (Aschoff 1936). He argues that the damping of the
reed is much stronger than that of the air column and so the
tube length determines the pitch. When writing this in terms of
the coupled equation system using Ar and Aa for the reed and
air amplitude respectively we have

Ȧr = αAr + k1Aa

Ȧa = βAa + k2Ar .

Here α is the strength of the reed acting upon itself and β
the one of the air column. So again a high damping results in
low values for these parameters. k1 and k2 are the coupling
constants again. Now, if the reed is much more damped than
the air column we have

α ¿ β (16)

and so by neglecting the α terms the system reduces to

Ȧr = k1Aa

Ȧa = βAa + k2Ar .

The reed depends only on the air column and so the air column
determines the pitch of the instrument.

Now with reed instruments the situation can also be described
in a more complex way taking the nonlinearities of the system
into consideration. As the reed is a closing valve being driven
by the air column but also by the blowing pressure we can
rewrite the equation above as

Ȧr = Γ[αAr + k1Aa + pb]

Ȧa = βAa + k2Ar .

In the first equation the blowing pressure pb is included. The Γ
is the function of the closing value. If the maximum possible
amplitude of the reed is Amax then

Γ =
{

αAr + k1Aa + pb, αAr + k1Aa + pb < Amax;
Amax, αAr + k1Aa + pb > Amax; (17)

So we can distinguish three cases:

Normal playing condition

Here the reed closes and opens again. So within a period we
have both cases of Γ. This means that the action of the air
column on the reed and the blowing pressure are strong and
therefore

β À αAr ¿ k1Aa + pb . (18)

This leads to

Ȧr = Γ[k1Aa + pb]

Ȧa = βAa + k2Ar ,

the reed is again dominated by the air column and the blowing
pressure.

Saxophones show a characteristic formant region in their spec-
trum around 3 kHz. This is caused by the fundamental fre-
quency of the reed which is still vibrating a bit of its own and so
enhancing this spectral region independently from the played
pitch. It is interesting to see, that although the fundamental fre-
quency of a normal saxophone reed is around 1.5 kHz when in-
vestigated without the normal playing, this frequency doubles
when the reed is in the air flow and interaction with the saxo-
phone embouchure (Bader 2008). When we neglect the α term
here we do this to show the basic slavery principle with this
instrument. Indeed we neglect it because it is very small com-
pared to the second term of the air column acting on it. If we
still take it into consideration we would include this formant
structure of the sound. So the formulation used here shows the
basic principle of the system, still when including all terms it is
capable of describing some of the fine structures of the instru-
ments. This was also the case with the plucked string instru-
ments when initial transients show the amplitude development
of the eigenmodes of the body within the sound attack.

Low blowing pressure

When the blowing pressure is low no tone is established and
we hear a noise sound only. This noise is still shaped by the
eigenfrequencies of the tube but still it is a broadband signal. In
this case we are not allowed to neglect α . Also the Γ function is
only present with its first case, the reed never closes completely.
Therefore we have
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Ȧr = αAr + k1Aa + pb

Ȧa = βAa + k2Ar .

Both systems influence each other and so no clear pitch is es-
tablished, the sound is noisy. Still the resonance spectrum of
the tube and the one of the reed will be present.

Reed instruments show a sudden change from noisy sounds
to pitches (with additional background noise) with a clear pres-
sure threshold. This is found in the synergetic formulation within
the presence or absence of the second condition of the Γ func-
tion. If the maximum amplitude is reach - if only for a short
time during a period - we have a completely new condition,
the one of normal pressure playing with a clear pitch. If this
maximum amplitude is not reached the system does not act in
a self-organized way and shows a quite random behaviour, a
noisy sound.

High blowing pressure

Theoretically, the saxophone may be played with such a high
pressure that no tone can establish. This is an unwanted case,
still it would mean that

pb À αAr + k1Aa (19)

and so

Ȧr = Γ[pb] = Amax

Ȧa = βAa + k2Ar .

The reed would only be dominated from a non-changing terms,
the blowing pressure. As the reed closes completely here, Γ[pb] =
Amax and so no sound is produced either noisy or with a pitch.

Multiphonic sounds

Multiphonic sounds are multi-pitch notes played by instruments
which can normally only produce one pitch at a time. Here so-
phisticated players can produce tones with up to five or six
notes. With reed instruments three basic playing styles allow
such multiphonics

• Blowing pressure at the noise / pitch threshold
• Very high blowing pressure
• Complex fingerings

In the case of a blowing pressure at the pitch threshold the reed
undergoes two periodicities instead of one. It tries to establish
a normal pitch which is counteracted by the pressure being not
strong enough to maintain it. Still right after giving up the pitch,
enough energy is again in the system to reestablish it. The time
span for this reestablishment is determined by the whole sys-
tem and so does not depend on the tube length alone and so
very likely in an inharmonic relation to the pitch which would
establish along with a slightly stronger playing pressure. In this
case the Γ function is changing constantly between its single
and its double case and therefore two periodicities are present
at the same time. Indeed, multiphonics produced by playing
pressures at the noise / pitch threshold mostly have only two
pitches.

In the case of a very high blowing pressure the case is sim-
ilar to the one discussed above. The difference is only that
then the system changes between the two cases of a normal

playing condition and a high blowing pressure constantly. The
blowing pressure is not strong enough to maintain a perfectly
constant closing although it maintains such a closing for some
time. Again, this leads to a most likely inharmonic relation be-
tween two time spans, the one of constant closing and the nor-
mal pitch. Again, two inharmonic periodicities are produced
and two pitches are heard.

The case of complex fingerings is most complicated leading to
much more pitches at once than the other two. This is caused by
different tube lengths caused by fingerings, where some holes
are open while holes deeper down the tube are closed again.
This leads to a multiple of reflection points within the tube and
so we would need to enlarge our coupled equation system like

Ȧr = Γ[k1
1A1

a + k1
1A2

a + ...+ pb]

Ȧ1
a = β 1A1

a + k2Ar

Ȧ2
a = β 2A2

a + k2Ar

...

By choosing fingerings which have suitable β and k1 a multiple
of pitches may be produced.

Of course multiphonics are also possible with combinations of
blowing pressure thresholds and fingerings, the equation sys-
tem will be a combination of these cases then, too.

CONCLUSION

Although many phaenomena discussed in this paper have also
been investigated many times before, the basic framework de-
rived from the Synergetic formulation of two coupled oscil-
lators works very well with musical instruments. Especially
when determining which of the oscillators takes over the other
it is well suitable. Also, initial transients can be modelled quite
easily. The strength of partials which can not easily be ex-
plained as a normal resonance can be understood as the take
over of one system by the other. Also nonlinear effects can be
included to understand the basic regimes of musical systems
like the bow - string or the reed - air column cases.

Synergetics normally formulates an order parameter and a con-
trol parameter. The former is the parameter which determines
the emergent behaviour, the latter controls the cases. This ter-
minology was omitted here not to confuse musical cases with
additional definitions. Still future work will discuss this, too.
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