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ABSTRACT 

The lacking simulation of diffraction is still a main problem of ray tracing in room and, even more, in city acoustics. The 
author´s approach to diffraction is an energetic one based on the uncertainty relation (UR). In many numerical experi-
ments, it has been validated quite well at the single screen and the slit as reference cases, compared with Svensson´s exact 
wave-theoretical secondary edge source model. To avoid an explosion of computation time, the long-term objective is to 
combine this diffraction method once with Quantized Pyramidal Beam Tracing (QPBT). For preparation, it has therefore 
been modified to the more efficient beam tracing technique and with that has been tested for some additional configura-
tions. Some improved by-pass-distance- and angle-dependent diffraction functions have been investigated to also fulfil 
the reciprocity principle. Recent experiments dealt with possible errors of unintended double diffraction, also with double 
diffractin at a cascade of two edges. Some new numerical results and comparisons with the reference model will be re-
ported. The further aim is to investigate the general applicability of the model to higher order diffraction. This, unfortu-
nately, has not been reached up to the deadline to submit this paper and therefore will be presented only orally.

INTRODUCTION -  THE BASIC IDEAS 

In room and urban acoustics respectively noise immission 
prognosis, ray or beam tracing methods (RT/BT) are well ap-
proved. The sound particle method with its detector tech-
nique and its statistical evaluation [1] is a version of RT [16]. 
BT, especially with pyramide shaped beams [17], is an effi-
cient deterministic straight forward implementation of the 
mirror image source method MISM [15]. However, these 
methods naturally neglect diffraction. 

The aim is an efficient handling of arbitrary diffraction and 
reflection also for higher orders, but without explosion of the 
number of rays and computation time. A diffraction module 
is desired, recursively applied, as an approximation for short, 
but not very short wavelengths.   

The basic idea for solving the ‘explosion problem’ is a re-
unification of ‘similarly running’ rays. This is only possible if 
rays are spatially extended, i.e. rather beams, in order to ex-
ploit their overlap, to interpolate and to re-unify them. For 
this purpose, Quantized Pyramidal Beam Tracing (QPBT) 
was developed in 1996 [4,7].  

This chance is the reason, why now beam instead of ray dif-
fraction is preferred; the transition from RT to BT is de-
scribed here. The numerical benefits are described in [2].  

 

A pre-condition for an effective pyramidal beam tracing is a 
subdivision of the room into convex sub-rooms. Diffraction 
events at ‘inner edges’ may be effectively detected on the 

transparent dividing ‘walls’. Furthermore, RT is accelerated 
considerably. Fig.1 illustrates this vision. 

 

 

 

 

 

 

Figure 1: Multiple diffractions in a (2D) room which is sub-
divided into convex sub-rooms: ‘transparent’ dividing walls 

are dashed; a ray is scattered/ diffracted several times on 
these ‘walls’ near edges (only one path is drawn) 

Recently a new method for the convex sub-division was 
found even capable of handling ‘holes’ (buildings on the 
ground plan of a city), this is decribed in [3]. 

As a high frequency approach for ray diffraction the UTD 
exists [11] and was recently utilized by Tsingos et. al. within 
BT [12]. Svensson developed a secondary edge source model 
valid even for low frequencies [9] (also only for hard 
wedges). However, both methods work recursively for higher 
order diffraction combined with the MISM for higher order 
reflections, hence the computation time explodes with both.  

Basic hypotheses for an introduction of diffraction are here: 

• diffraction is mainly an edge effect, 
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• energetic superposition, hence RT can be used.  

But there another problem arises: with RT, rays never hit 
edges exactly, they pass only near by.  

Basic ideas for solving both problems are: 

• not all combinations and paths of diffracted/ re-
flected rays or particles are important, only those 
where particles pass close to edges,  

• the bending effect on a sound particle – the diffrac-
tion probability- should be the stronger the closer 
the by-pass-distance.  

This idea is inspired by Heisenbergs Uncertainty-Relation 
(UR): the by-pass-distance as an ‘uncertainty’. Thereby, the 
diffraction pattern is the spatial Fourier transform of the 
transfer function of a slit. Already in 1986, the author made a 
successful approach for a sound particle diffraction based on 
the UR [5]. In 1999, Freniere et al. also used an UR based 
diffraction method in another way successfully in optical RT 
[13]. In 2006 the author’s approach has been generalized, 
embedded in a full 2D ray tracing program, now also for 
finite distances [14]. The results have been compared earlier 
with the Maekawa’s ‘classical’ ‘detour-model’ [8], later with 
Svensson’s model for the screen. (The impulse responses 
were Fourier transformed and the transfer functions octave 
band averaged.) Reference cases were the semi-infinite 
screen as a ‘must’ and the slit (two edges) as self-
consistency-test. After a long time the UR based sound parti-
cle diffraction model has right now been published in-depth 
with all these extensions and validations in ACUSTICA [6]. 
Also the faster beam diffraction model has been tested for 
many additional configurations.  

This paper is as a continuation of last year’s papers (a previ-
ous summary is in [14]). Some recent investigations have 
been devoted to the checking of the fulfilment of the recip-
rocity principle.  Last year, some discrepancies occurred in 
some cases. To overcome this, now some improved versions 
of the two basic functions (described below) have been 
tested:  

• the ‘Diffraction angle probability density function’ 
(DAPDF) 

• and the ‘Edge Diffraction Strength’ (EDS).   

A new DAPDF could be derived from wave theory. Some 
other versions have been tested.  

Further more, the applicability of the model to double diffrac-
tion has been investigated numerically,  

• at a slit, but now with finite source and receiver 
distances,  

• unintended double diffraction at two edges respec-
tively the attached ‘transparent walls’ (as in fig.1) 

• at two edges in cascade, forming a ‘thick’ obstacle.  

 

THE SOUND PARTICLE DIFFRACTION MODEL 

There are two basic concepts of implementation: the ‘Diffrac-
tion angle probability density function’ (DAPDF) and the 
‘Edge Diffraction strength’ (EDS). Here, only a very rough 
outline is given (full description in [6]). 

The idea of that DAPDF (with non-split-up particles) 
emerges from the UR. But it is more efficient (and physically 
equivalent) to split up the rays into new ones with partial 
energies according to the DAPDF (fig. 2). 

 

 

 

 

 

 

 

 

 

 

Figure 2: The sound particle diffraction model: Each mo-
ment a particle passes an edge of a screen at a distance a 

(below), it ‘sees’ a slit (above with the DAPDF on the right 
hand side). According to the uncertainty relation a certain 
EDS causes the particle to be diffracted according to the 
DAPDF= ( )εD . Below on the right some angle windows 

used to count the diffracted particles and to add up their en-
ergies to the transmission degrees (acc. eq.5). All the shifted 
DAPDFs of the different rays add up to the screen transmis-

sion function (as e.g. in fig. 6). 

The DAPDF 

The DAPDF (see fig.2) is derived from the Fraunhofer dif-
fraction at a slit   

   22 /sin uu∝ , where    επ sin⋅⋅= bu               (0), 
here approximated by επ ⋅⋅=→ bvu  , valid for parallel 
incident and diffracted rays. The DAPDF, averaged over a 
wide frequency band (similar as for ‘white light’) is roughly 
approximated by 

 ( ) ( )2
0 21/ vDvD +=  with ε⋅⋅= bv 2    (1) 

where b is the apparent slit width in wavelengths, ε  is the 
deflection angle and D0 is a normalization factor such that the 
integral over all deflection angles is 1. The D0-factor must be 
computed for each edge by-pass since its value depends on b 
and the angle limits of the wedge. In the following all dis-
tances are expressed in units of wavelengthsλ .  

The EDS 

To develop a modular model which is applicable also to sev-
eral edges that are passed near-by simultaneously, the ‘Edge 
Diffraction Strength’ (EDS(a)) is introduced such that the 
EDS of several edges may be added up to a total TEDS, 

∑= iEDSTEDS      (2) 

To be used as input for the DAPDF, an ‘effective slit width’ 
is then 

TEDSbeff /1= .    (3) 

DAPDF=averaged slit function 

counting windows 
screen 

edge 
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By self-consistency-considerations (the RT experiment at a 
slit should re-produce the energy distribution of itself) it turns 
out that 

( ) ( )aaEDS ⋅= 6/1     (4) 

So, with only one edge, a by-passing particle would ‘see’ a 
relative slit-width of beff=6a. 

Method of evaluation 

For a systematic analysis,  2D -RT and -BT was evaluated for 
sources S and receivers R at finite distances rs and rr of 

1,3,10,30,100 wavelengthsλ and 15 angles rϕ (and later 

also sϕ ) -84…+84° in steps of 12°, in total 5*5*15=375 

combinations  at the screen (fig.3) as well as at the slit of 
width b between two edges at –b/2 and +b/2 on the y-axis.  
All distances are measured in units of wavengths. 

 
Figure 3: Geometrical definitions at the screen; dotted: the 
‘transparent wall’ (aperture) at which the particles are dif-
fracted 

For all these parameters, the transmission degree T was de-
termined. T is defined as the intensity with the diffraction of 
an obstacle relative to the intensity in free field where ‘inten-
sity’ in 2D is ‘sound power/width’ instead of ‘power/ sur-
face’. But the proportion of T is the same in 3D. For the slit, 
T equals directly the DAP, the energy portion for a certain 
angle range β∆ relative to the energy incident only onto the 

slit.  The results were compared with the known reference 
functions, evaluating the mean, max, min and the standard 
deviations over all. Curves as in fig. 6 are plotted. 

With RT, many – typically 10…100 – particles are shot 
closely over the edge, i.e. within the by-pass distance range 

of 0…7λ (this means that some thousands primary particles 
per full range of 2π have to be emitted). In the first approach 
[5], their energies were counted in ‘angle windows’ in infin-
ity on the other side to compute from that the T of the semi-
infinite screen. Now, in order to simulate also finite receiver 
distances, the particles are detected utilizing a grid of quad-
ratic particle detectors [1,7]. For sound particles the immis-
sion formula [1] is valid   

( )∑∑
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⋅⋅=
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              (5)  

where the ( ) 1'0 , << nMD β  are the energy fractions of dif-

fracted rays (integrals over the DAPDF) in the angle 
range β∆  

of the Mth incident ray and for each of the nth 

diffracted and received ray ‘within an imagined beam’, R is 
the direct distance source-receiver, Sd the detector surface for 
sound particles and wMn are the inner crossing distances of 
particles in detectors. 

RESULTS OF RAY DIFFRACTION 
EXPERIMENTS 

 

 

 

 

 

 

Figure 4: First order diffraction on a single screen. The yel-
low sound particles emitted from the source are diffracted to 
secondary, green, sound particles. The detectors are aligned 

in four radii which fifteen receivers each.  

At the first go (without any parameter fitting), the agreements 
with the reference function (Maekawa) were again very good 
for almost all cases, now also for finite distances (standard 
deviation in most cases  <1 dB, curves similar as in fig.6). In 
1986, this happened even for many cases of the slit. Now, 
also the comparison with Svensson’s result yielded good 
results (standard deviations of 0.66dB). 

 

FROM RAY TO BEAM DIFFRACTION 

To prepare the later implementation of QPBT and to reduce 
the number of energy carriers (to enhance efficiency), now 
beam diffraction was tested. For mirror image sources (as 
represented by beams), there is no stochastic variation and 
the 1/r² -distance law may be applied to compute the immit-
ted intensities at the receiver points (in 2D a 1/r-law, rBM is 
the distance bending point -receiver):  

( )
∑⋅∆⋅

⋅⋅=
M BM

M
BT r

D

M

R
T

β
β

π
0

2
'    (6)  

     

 

 

 

 

 

 

Figure 5: 2D beam diffraction, specialized for the screen 
(black wedge in the middle): Typically 10…100 beams 

(‘fans’ in 2D) (left, pink) arrive within the by-pass distance 

range of 0…7λ (here exaggerated). The direct sound passes 
above (yellow). To reach all receivers, beams are split up into 
each typically 10…100 secondary beams (here best as many 

as receivers exist, i.e. 15…31). To the right the diffracted 
beams: the darker the colour the higher the intensity –and this 
mainly in straight forward directions; bottom right: the beams 

relevant for one specific receiver are drawn elongated. 

( )MD β  is the same as ( )nMD ,' β  in eq. 5 for the Mth inci-

dent beam which belongs to the Mth relevant incident and 
diffracted beam (elongated in fig.5). So, for one receiver, 
only one loop over all beams (M=1…M0) is necessary, not a 
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secondary loop over each time an additional number of sec-
ondary particles (n=1…n0). So, RT can be equivalently be 
replaced by BT being much more effective. The valid by-pass 
distance of a beam is the middle ray’s distance within the 
beam. 

A mathematical analysis [2] shows that, in order to reach a 
certain numerical accuracy, one needs, as a thumb rule, at 
least 10 times more particles and detector crossings than 
beams with respectively smaller computation time.  

 

Results of beam diffraction at a screen 

- The agreements RT /BT were very good (standard deviation 
of only 0.67dB); 

- The direct comparison between BT and the Maekawa 
screen transmission functions yielded a standard deviation  of 
0.74dB,  

 
- the comparison with Svenssons’s exact coherent secondary 
edge source model as analytical reference model  yielded 
only 0.39dB (see fig. 6). 

 

 

 

 

 

 

 

 

 

Figure 6: Example of a comparison between beam tracing 
(green) and Svensson’s reference method (blue, falling to the 
left). The transmission degree in dB is given as function of 
the receiver angle, to the left the ‘shadow’ region; red curve, 
rising to the left: deviation* 10 (70 incident * 31 diffracted 
beams within amax=7λ , source and receiver distance: 10λ , 
source at y=0). 

Also, the influence of the inner wedge angle 
wϕ (fig.3) was 

investigated: For smaller inner angles their influence is low, 
but for the case of 90°, compared with 0°, the differences in 
the transmission levels are up to 4dB  (mean difference are 
typically 0.4dB). However, in Svensson’s reference model, 
hard flanking walls are assumed whereas in the interaction 
model based on the UR only the position of the edge is rele-
vant, not any flanking walls. 

 

Parallel beam diffraction at a slit 

For this self-consistency-test, both, source and receiver are in 
infinity, hence, the incident parallel beams carry a fraction of 
energy according the portion of the slit width, the diffracted 
beams carry energy according their angle width. Fig.7 shows 
the experiment similar as explained in fig.5, drawn by the 
program with exaggerated beam widths. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Only the beams near the lower edge are evaluated 
by reasons of symmetry, the yellow beam in the middle carry 

the undiffracted energy (outside certain maximum bypass-
distances.) The EDSs of the two edges were added (Eqs. 2-4). 

 

 

 

 

 

 

 

 

Figure 8: Transmission curves as a function of diffraction 

angle at a 10λ wide slit (upper violet curve) as the sum over 
all DAPDFs  = lower blue curves. Green: reference function. 

The standard deviation for all cases is only 0.75 dB, but there 
are up to 3 dB too high levels at high angles (‘deep in the 
shadow’) compared with the slit function itself (green curve). 
(Without the amax-limitation, even deviations up to 5dB, with 
the EDSE much better, see below). This result depends 
hardly on the number of beams. 

 

FROM BEAM DIFFRACTION TO INTEGRATION 

Now, to exclude any numerical error with future optimiza-
tions due to the finite number of beams (M0), from the beam 
summation formula (6) a beam integration (BI) formula was 
derived. With απα dM →=∆ 0/2  and  

( ) ( )( )αβββ dD M →∆/  (the DAPDF) equ. 6 converges to  

( )( )
( ) α
α
αβα

α

d
r

d
RT

BM
BI ∫⋅=

max

min

   (7) 

where 
maxmin/α  are the min and max incident angles, 

sϕα −=min
. The difference in comparing the results of BT 

and BI for the screen was only 0.38dB standard deviation.  
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A first attempt for an approvement of the DAPDF  

Already in the early investigations [5] a better approxiamated 
DAPDF (instead of eq.1) was used:  
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This DAPDF2 has a wider top as the former, better approach-
ing the averaged slit-diffraction function ²/)²(sin uu . 

But, as it turned out astonishingly now:  its use does not pay: 
The standard deviation at the screen became even slightly 
higher than with before (0.9dB). With the slit there is hardly 
any improvement. 

In [13] is proposed a gaussian distribution; but this is incon-
sequent, as the transfer function (and hence its Fourier trans-
form) of a slit is not gaussian.   
 
 

A first improvement of the EDS 

As it turned out, at least for the slit, the edge diffraction 
strength for wider by-pass-distances is to high. Therefore 
another EDS was tested again [5] with an exponentially de-

creasing strength and a limitation to 7λ :  

( ) 0  else  ,70for   
3

1 <<
+⋅

= a 
ea

aEDSE
a

 (4b) 

With this (instead of the EDS of eq. 4) at the slit the agree-
ments become much better: maximum deviation 1dB, stan-
dard deviation 0.5dB. (With the single screen, they become 
slightly worse, especially at short distances, std. dev. 0.8dB). 

  In [13] is also proposed to evaluate only distance to the 
nearest edge. Then the total EDS should (by self-consistency) 
be defined as       

( ) ( )( )2121 ,min4/1, aaaaTEDS ⋅= .  (4c) 

But, the result is much worse than with the EDSE: max. de-
viations were up to 5dB, std.dev. 1.4dB. 

 

THE PROBLEM WITH THE RECIPROCITY 

Do the same diffraction levels result with a permutation of 
source and receiver? This does not follow evidently from the 
application of the UR, resp. eqs. 1-4 or eq. 7. Hence, if the 
reciprocity were fulfilled, this would be an important indica-
tion of the correctness of the model. Earlier simulations re-
vealed: the reciprocity principle is fulfilled (max. dev. 
0.49dB, std. dev. 0.21dB) if only rs and rr are interchanged, 
assuming only the total diffraction angle εϕϕ ≈+ rs

 were 

relevant regardless of the position of the integration area (the 

‘transparent wall’ in fig.3. or restricted for 0=sϕ . If, how-

ever, also 
sϕ and

rϕ  are interchanged, severe deviations 

(mean deviations up to -10dB) occurred in cases of high 

negative values of sϕ . The reason is: Equ. 7 is not symmet-

ric with respect to an interchange of source and receiver.  

Some geometrical transformations lead to the alternative 
integral over the by-pass-distance a: 

( ) ( )( ) ( )
( ) ( ) ( )( )da

aarar

abad
RT

a
seff

∫ ∆⋅⋅
⋅

⋅=
max

0 21 cos

cos,

α
ϕε

  (8) 

where d is the DAPDF involving the EDS beff(a), R is the 
direct source-receiver distance, r1,2 are the radii to source and 
receiver from the bending point, 

minmax ααα −=∆ , where 

maxα corresponds to amax, and α∆  is the angle at the source 

(see fig. 3). So, equ. 8 should be made symmetric by intro-
ducing a ( )rϕcos  factor in the nominator. This might be 

justified as according Lambert’s law no radiation is possible 
stronger than accoding a cosine-law expecially at small an-
gles relative to the diffracting ‘transparent wall’. Or the 
DAPDF (being up to now a function strinctly depending only 
on a total diffraction angle) should be completed approxi-
mately by a ( )εcos  factor in the nominator of equ. 1 with 

επ sin⋅⋅= bu  from now on. But a pure empirical approach is 
not satisfying, so an analytical ‘derivation’ of the missing 
cos–factor was aimed at.  

Attempts at optimizations of the DAPDF  

The classical textbook derivation of the Fraunhofer formula 
(0) is only an approximation for small angles and for a plane 
perpendicular incident wave [10].  A more thorough deriva-
tion starts with the Kirchhoff-Helmholtz-Integral (KHI) for 
the aperture of a slit assuming parallel incident and emerging 
waves but with angles 

sϕ  onto resp. 
rϕ  from the slit. The 

differentiations with the KHI delivers the previously missing 
typical cosine projection factors, together the factor   
    ( ) ( )[ ] 2/coscos rsf ϕϕ +=                 (9) 

The pressure at the receiver is  then 

     ( ) ( )
r

rs r
rrik

e
u

u
bfp /

sin +⋅






⋅⋅∝   (10).  

where ( ) uu /sin  is the commonly known slit function with  

επ sin⋅⋅= bu . To get the energetic transmission T,  f has to 
be squared. Physically (as the ‘transparent wall’ is just a fic-
tion), only the total angle εϕϕ =+ rs

 may be relevant such 

that 2/εϕϕ == rs
 and the characteristic fac-

tor ( ) ( ) 2/cos12/cos22 εε +==f  occurs. With that the recip-

rocity is better fulfilled. The following DAPDFs were tested 
again by the described sound particle diffraction simulations 
at the screen compared with the Svensson reference model 
over all the 375 combinations for 3 cases: 

• for the screen with the (more decreasing) EDSE,  

• for the screen with the old EDS,  

• for  the slit with the EDSE  (e.g. for the typical case 

of  b=10λ slit width) 

Some summarited results (standard deviations) are: 

Tab.1.                  | comp.ref. screen EDSE | EDS | slit [dB] 
1)  )(),(1 uDbD eff =ε             1.3            0.7         0.5 

2) εε cos)(),(2 ⋅= uDbD eff
            3.0            1.8         0.7 

3)  ( ) 2/cos1)(),(3 εε +⋅= uDbD eff
   1.8            0.8         0.5 
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Discussion 

Over all, D3, seems to be the optimum DAPDF. This is also 
the consequence of the above considerations. But the result is 
not really satisfying: while for the screen, the old EDS seems 
better, for the slit the EDSE with the exp-term is better. A 
reason might be: To introduce any function of only the total 
diffraction angle ε into the integrand of equ. 8 does not 
solve the problem of unsymmetry of this formula; actually 
really the factor ( )rϕcos  should be introduced – but this is 

not in accordance with the UR based particle diffraction 
model which should depend only on the by-pass distance and 
deliver a DAPD only depending on the total angle. On the 
other side the introduction of ‘transparent walls’ of quasi 
arbitrary orientation remains a critical fiction anyway. Figure 
9 shows one of the screen results. 
 

 

Figure 9: Comparison between ray tracing (blue) with the 
DAPDF D3 (1+cos(ε )) and Svensson’s reference method 
(green);  transmission degree in dB given as function of the 
receiver angle, to the left the ‘shadow’ region; red curve: 

deviation*10; amax=7λ , source and receiver distance: 10λ , 

0=sϕ . 

NON PARALLEL RAY DIFFRACTION AT A 
SLIT FOR FINITE SOURCE DISTANCES 

It is not self-understanding that, applying the EDS-model, the 
simultaneous diffraction at the two edges of a slit for finite 
source-edge distances also results in good agreements with 
wave theoretical models. Recently, using the improved EDS-
function with the exp-term (equ. 4b), this has been also veri-
fied (again with a ray diffraction model). Fig. 10 and 11 show 
the result of one of many examples; the standard deviations 
of all the 375 angle-radii-combinations is lower than 1dB. 

 

 

 

 

 

 

Figure 10: Transmission function of a slit of width 10λ for 

a source distance 99λ  and receiver distance 10λ . UR 
based ray diffraction with the EDS of equ. 4b (blue) in com-
parision with Svenssons secondary source diffraction model 
(green). Red: difference*10, standard deviation here only 
0.36dB. 

 

 

 

 

 

Figure 11: Same kind of comparison as with fig.10, but with 
the DAPDF D3 and for a wider slit of width b=30λ , source 

and receiver distance: 30λ  

SOME EXPERIMENTS WITH   
UNINTENDED DOUBLE DIFFRACTION 

The necessary procedure of convex sub-division (see fig. 1) 
may often – by quasi random effects – deliver two ‘transpar-
ent walls’ instead of one, for ex. if in a rectangular room (as 
in fig.4) two edges are found to be connected with a third 
edge instead of just one. Physically, however, the situation is 
the same and the diffraction result should be the same– one 
of some paradox cases of unintentional formal (not real) dou-
ble-diffraction to be handled sufficiently. Fig. 12 shows the 
case of two split-up ‘transparent walls’ forming with the 
screen an Y.  The errors (standard deviations) compared to 
the non-split-up case (its respective reference functions for 
the case single diffraction in the middle) were astonishingly 
small as indicated by the functions in fig. 13 only 0.91dB. 

 

 

 

 

 

 

Figure 12: Double diffraction at 2 ‘transparent walls’ form-
ing with the screen (bottom in the middle) an Y (see the col-
our borders reaching the upper left and right corners in 45° 
direction) ; green: rays 1.order, red: 2. order diffracted. Blue 
circles: particle detectors at the receivers 

 

 

 

 

 

 

 

 

 

Figure 13: Transmission function of unintentionally 2 trans-
parent Y walls (blue curve fig. 12) compared with one (red) 

and Svensson’s reference function for one (green);  
transmission degrees in dB as function of the receiver angle,  

ex. for source-edge and edge-receiver distance of 10λ   

� diffraction angle � 

� diffraction angle � 
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Another case of often double diffraction where physically 
rather a single may diffraction be assumed is that of two 
edges very close to each other, i.e. smaller than a wavelength, 
typically as real (not infinitely thin) walls of buildings. It 
least it should be clear that these cases should be handled as 
if there were only one diffraction event - the idea is in further 
simulations to ‘switch off’ the diffraction strengths of those 
closely following edges. To investigate this case, in the mid-

dle, instead of one, two edges in a distance of 0.1λ were 
created. Astonishingly, comparing the total transmissions-
functions of the double with the single diffraction (fig. 14), 
again, in typical situations, reveals standard deviations of 
only in the order of 1dB. By the way: to ‘switch off’ or at-
tenuate the second diffraction in this close case did not yield 
better result.  

 

 

 

 

 

 

Figure 14: Transmission functions of two close (0.1λ ) 
transparent walls in the middle (blue line) compared with one 
(same kind of diagram as fig. 13); standard deviation for 
source-edge and edge-receiver distances of  10λ :  1.18dB  

DOUBLE DIFFRACTION AT A CASCADE OF 
TWO EDGES  

Finally, first time by ray diffraction experiments, the double 
diffraction after each other at two edges (fig. 15) has been 
investigated and compared with wave theoretical reference 
functions for this case by Svensson. The new parameter is the 
distance d between the two edges (in wavelengths).  
  
 

 

 

 

Figure 15: Geometry for the double diffraction at two edges 
after each other (cascade) 

 

 

 

 

 

 

 

Figure 16: Double diffracted rays at the ‘transparent walls’ 
above these two edges (of fig. 15);  

green: rays 1.order, red: 2. order diffracted.  
blue circles: particle detectors at the receivers 

 

 
 

 

 

Figure 17: Double Diffraction at the cascade of two edges of 
fig.15 in distance 10λ : transmission functions for the exam-
pel of a source and receiver distance of 10λ to the middle. 
UR based ray diffraction with the EDSE of equ. 4b (blue) in 
comparison with Svenssons secondary source diffraction 
model (green). Red: difference*10.  
 
Discussion 
As can be seen in fig. 17, the results (here only one example 
for source and receiver distance of 10λ ) is almost unusable. 
The Svensson reference function yields zero transmission 
(minus infinite levels) for angles beyond +-60° this is plausi-
ble as for the chosen distances of 10λ also for the edge dis-
tance then nor reasonable source and receiver positions exist; 
also, the model was not usable for source-receiver positions 
at 0° in line with the two edges (special case of double dif-
fraction); for an diffraction angle of -45° (into the shadow) 
there is an agreement recognizable (also for positive angles in 
the visibility range). Similar errors occurred in other cases. 
Up to now, no better comparisons succeeded. Another diffi-
culty should be mentioned: in wave theory, boundary condi-
tions have to be fulfilled; so, there is a difference whether 
flanking surfaces are ‘hard’ or ‘soft’, or whether they exist or 
not, for ex. a ‘roof’ connecting the two edges of fig. 15; the 
uncertainty based sound particle diffraction model is not 
sensitive to these things – only to the vicinity of edges. 

Optimum numerical parameters 

Numerically, it is useful that a maximum by-pass distance of 
amax= 7λ (see fig.2) may be established; beyond that, direct 
transmission may be performed (figs. 5+7). In the case of the 
slit (or several edges), amax even must be defined to reduce 
the effect of the EDS (if not the EDSE is used): the level 
deviations to the reference functions at the screen were with-
out amax: max 3.47dB, std.dev. 0.91dB ; with amax=5 only max 
0.94dB, std.dev. 0.4 dB. The maximum deviations increase 
with decreasing minimum by-pass distances, it is almost 
possible to take 1λ . This cannot be improved with more 
particles. With RT, a decisive quantity is the number of inci-
dent particles within a close by-pass distance amin. That 
should be maximum 0.1λ . As a technical improvement for 
BT, one incident beam onto the range near the edge is suffi-
cient, a group of diffraction points within 0… amax may then 
be established from which several beams are emitted. The 
number of secondary beams should be in the order of the 
number of relevant targets or receivers on the other side.   

Fortunately, also the orientation of the ‘diffracting surface’ 
‘above’ the screen (dashed lines in fig. 1) has only a weak 
influence (at +-45° less than 1dB). This is important for the 
practical implementation of the model in sub-divided rooms. 
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CONCLUSIONS 

As was found with the first investigations already a long time 
ago, for the classical cases of screen and slit, the agreements 
between the UR based sound particle diffraction model and 
the wave theoretical reference functions were in most cases 
very good, the standard deviations were mostly better than 
1dB;  as now emerged, even for some cases of double diffrac-
tion. First time also the case of diffraction at the edges of a 
slit from finite distances has been compared with reference 
functions and revealed good results. So, generally, it seems 
like the uncertainty relation may be applied also to acoustics 
and sound may be handled as particles even with diffraction. 

The old DAPDF combined with the attenuating EDSE were 
affirmed to be a good combination of diffraction functions 
for screen and slit.  

An improved DAPDF intended to better fulfill the reciprocity 
principle was derived from the Kirchhoff-Helmholtz- Theo-
rem, but the standard deviations were not much lower than 
before, with that the beam integration formula is not yet 
strictly symmetric.  

Some crucial cases of unintentional double diffraction events 
revealed to be not harmful. However, the case of double dif-
fraction at two edges in cascade could not yet be investigated 
sufficiently. 

For many comparisons the faster beam diffraction method 
was used. For faster and safe validation (avoiding numerical 
errors due to a finite number of beams) an integral formula-
tion was found. 

The more efficient beam diffraction method delivered good 
results. This is important, as the re-unification technique by 
QPBT to avoid computation time explosion for higher order 
diffraction, is based on beams rather than on rays.  

 

OUTLOOK  

First of all, other more general events of multiple diffractions 
will have to be investigated, preferably also by beam instead 
of ray diffraction. One of the questions in this context is the 
limiting distance between edges for ‘independent’ subsequent 
diffractions and other crucial cases of physically not plausible 
multiple diffractions, e.g. passing of long surfaces with slight 
curvatures. Also still better DAPDFs – probably to be com-
bined with modified EDS functions will have to be found to 
fulfil the reciprocity postulation.  

The strong frequency dependence of diffraction (influencing 
the question what are ‘near’ edges and what is the best amax) 
remains a fundamental problem.  In final simulations, each 
beam should carry energies of several octave bands.  

 
The next big step is the extension of the diffracting proce-
dured to three dimensions. In principle, this should not be a 
problem, as there is actually not added a degree of freedom; 
edge diffraction happens mainly in the area perpendicular to 
the edge; it is basically a 2D effect; if, however, the edge is 
finite, there is also a diffraction component along the edge 
direction. Thus, much more secondary rays or beams are 
necessary – and the more important re-unification algorithms.   

The author thanks Alexander Pohl for performing the many   
RT-diffraction experiments. 
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