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ABSTRACT 

In room and urban acoustics, ray tracing as well as, for the reverberation tail, radiosity based simulation methods are 
in use. Any implementation of diffraction into the sound particle simulation method, i.e. a variant of ray tracing, 
causes a split-up of sound particles and an explosion of computation time. To prevent that, a re-unification effect of 
sound energies has to be achieved as known from the radiosity method. For this purpose, the discretization of the 
walls into small patches is applied to the sound particle simulation method. This combination is called the sound par-
ticle radiosity method. In the main part of this paper the efficiency of the presented sound particle radiosity in inves-
tigated by deriving a statistical re-unification formula as a function of the main quantization parameter: the patch size. 
Furthermore the error due to quantization is described as a function of the patch size. It is shown, that smaller patches 
increase accuracy, but larger patches increase the efficiency. The smearing of echograms due to the receiver size 
mainly masks the quantization error when the receiver size is at least 10 times the patch size. This investigation, re-
stricted to 2D, serves as a feasibility test for quantized pyramidal beam tracing. 

INTRODUCTION 

In room acoustics as well as in urban acoustics sound propa-
gation has to be simulated efficiently. Wave-based simulation 
methods as the finite element method [1] or the boundary 
element method [2] include diffraction and scattering as a 
wave phenomena. But they cannot be used for large-scale 
models or high frequencies (as a thumb rule the size of the 
finite elements must not exceed about a sixth of the wave-
length). On the other hand, the lack of geometric acoustic 
simulation methods such as the image source method [3], ray 
tracing [4], beam tracing [5] or the radiosity method [6], is, as 
a matter of principle, the missing diffraction.  

Additional diffraction modules have to be introduced into 
geometric simulation methods. Only completely diffuse re-
flections according Lambert`s law [7] may be traced by ray 
tracing and are even exclusively possible with the radiosity 
method. 

For the image source method, as an improvement to the well 
known detour law for diffraction, Svensson presented a sec-
ondary source model [8]. It computes diffraction coherently 
by integration over all secondary sources placed on the dif-
fracting edge. Stephenson presented an energetic diffraction 
module based on the uncertainty principle that is applicable 
to beam as well as to ray tracing, interpreting beams and rays 
as carriers of sound energy [9]. In this approach, sound en-
ergy carriers are diffracted around edges corresponding to a 
diffraction angle probability density function depending on a 
by-pass distance.  

To introduce diffraction as well as scattering into ray or beam 
tracing, a split-up of them is necessary to realize a suitable 
resolution in space. This split-up causes an exponential 
growth of the computation time for ray as well as for beam 

tracing, which prevents an efficient simulation of sound 
propagation.  

To reduce this exponential growth of computation time, it is 
aimed at a re-unification of sound energy carriers. This is 
inspired by the radiosity method - where sound energy carri-
ers are re-unified at each patch automatically. That re-
unification is also the basis of quantized pyramidal beam 
tracing [10]. While quantized pyramidal beam tracing is not 
implemented and thus not evaluated, this paper aims, as a 
first approach, at a re-unification of rays instead of beams 
[10]. 

In this paper the idea of combining ray tracing with the radi-
osity method to a very efficient geometric simulation method 
including diffraction and scattering is described. To fade out 
the complex geometric algorithms and discuss the statistical 
effects, the study is limited to 2D. 

Organization of the paper 

In the first part of the paper the sound particle simulation 
method is described and the used diffraction and scattering 
models are presented. In the second part the re-unification of 
sound particles based on the radiosity method, first presented 
as the sound particle radiosity method by Stephenson [10], is 
repeated. In the main part of the paper, first time an imple-
mentation of the sound particle radiosity method is intro-
duced. Besides the statistical evaluation of the efficiency of 
the method, the analytical error in simulation due to quantiza-
tion is presented relative to the unquantized sound particle 
simulation method. Finally a recommended patch size as a 
trade-off between accuracy and efficiency is discussed in the 
conclusion. 
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THE SOUND PARTICLE SIMULATION METHOD  

Ray tracing is one of the basic geometric acoustic simulation 
methods for sound propagation, especially for the simulation 
of reflections of higher orders. The idea is to emit a number 
of � sound energy carriers and trace them through the scene. 
Each sound energy carrier hitting a wall is reflected at the 
wall (geometrically or diffusely). With each reflection, called 
iteration later, the energy of the sound energy carrier is re-
duced by absorption [7].  

The basic algorithm of the ray tracing can be described 
within three loops: over all sources, over all sound energy 
carriers, over all reflections. The process is shown in a flow 
chart in Figure 1. 

 

Figure 1. Flow chart of ray tracing. All sound energy carriers 
are traced within three loops. The outer loop is a loop over all 
sources; the middle loop is a loop over all sound energy car-
riers (per source). Finally the inner loop handles all reflec-

tions of a sound energy carrier, called iteration. 

To detect the sound energy carriers, receivers have to be 
placed on the position, where the sound energy distribution is 
of interest. If a whole spatial sound distribution is wanted, a 
grid of receivers is chosen. Rays are infinitely thin lines. So 
the receivers have to be spatially extended to allow an inter-
section of sound energy carriers and receivers. This is the 
main difference to beam tracing, where the sound energy 
carriers are spatially extended beams and the receivers re-
main point-shaped. When a sound energy carrier, ray or 
beam, intersects with a receiver, its energy and delay time 
since emission from the source is counted in the receivers. 
The result is an energy-over-time distribution for each re-
ceiver, the echogram (see Figure 2). 

 

 
a) Geometric scene with sound paths 

 
b) Echogram for specified source-receiver combination 

 
Figure 2. Sound propagation in a simple rectangular, two-
dimensional room. Sound can propagate from the source to 
the receiver in direct line (red, direct sound), over some re-
flections (blue, early reflections) or over many reflections 

(green, reverberation tail). 

 

This echogram can be separated in three parts:  

• direct sound 

• early reflections 

• reverberation tail 

The direct sound describes the direct path between source 
and receiver and is most important for the source localisation. 
The early reflections describe sound paths from source to 
receiver over only a few walls. They are very important for 
speech intelligibility and source localization. The reverbera-
tion tail describes the reflections over many walls and allows 
conclusions of the room shape and size.  

With ray tracing, spherical detectors detect, whether a ray 
intersects. Then the intensity of the respective mirror image 

source is computed according the 
�

��-law. With the sound 

particle simulation method (SPSM), the energy of crossing 
sound particles is also weighted with the time (or distance) 
the sound particles travel in the receivers [11].  

As the SPSM is much simpler than BT [11] (only thin lines 
rather than a whole beam range) it is chosen here. 

Convex sub-division 

Speed-up techniques for ray tracing are based on spatial sub-
division, because the most time consuming part of the simu-
lation is the search for the next intersection point. One of 
these techniques reduces the needed time by dividing the 
scene into convex sub-scenes [12]. A second great benefit of 
convex sub-division is the detection of diffraction. While in a 
convex sub-scene no diffraction can occur, each intersection 
with a transparent wall, i.e. an inserted wall to separate sub-
scenes, can be interpreted as a possible diffraction. 

Scattering in the SPSM 

The SPSM supports geometric or diffuse reflections (scatter-
ing on rough surfaces). Therefore, for each wall a scattering 
coefficient δ can be defined, which describes the ratio of 
scattered sound energy relative to the overall reflected en-
ergy. This scattered energy is independent of the incident 
angle.  

There are different methods to implement the scattered en-
ergy. One is to draw a random number � between 0 and 1 and 
by that decide whether the ray is reflected diffusely or geo-
metrically (if � < 	 diffusely, else geometrically). If diffuse, 
another random number (in 3D: two) determines the direction 
in the half space. 

A second possibility is to calculate the geometrically re-
flected direction as well as the random direction of a diffuse 
ray and add both direction vectors weighting the diffuse di-
rection with δ and the geometric direction with (1 − 	) (and 
then normalize to 1). Both methods have a low spatial resolu-
tion in common, because still only one sound particle is 
traced further on carrying the whole scattered energy. On the 
other hand there is no explosion of computation time due to 
no split-up of sound particles. 

In our approach we keep the geometrically reflected energy 
of one sound particle and add a number S of additional scat-
tered sound particles. These are equally distributed over the 
half space. (If only the portion 
 of the room’s surface is 
scattering with a split-up of �, then the effective additional 
number of scattered sound particles  is � = 
 ∙ �) 
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Diffraction in the SPSM 

Some basic features of Stephenson`s method in short: In-
spired by the uncertainty relation (interpreting the by-pass-
distance as an ‘uncertainty’) the diffraction probability 
should be the stronger the closer the by-pass-distance � [9]. 
The diffraction angle probability density function (in short: 
�) is derived from the spatial Fourier transform of the trans-
fer function of a slit, smoothed over a wide frequency band 
and simplified: 

    �(�) = ��
���∙��  with � = 2 ∙ ���� ∙ � (1) 

where ���� is the apparent slit width measured in wave-
lengths �, � is the deflection angle and �  is a normalization 
factor (see Figure 3). From a self-consistency consideration 
follows that ���� = 1 6�"  

 
Figure 3. The sound particle diffraction model: Each mo-

ment a sound particle passes an edge at a distance �, it ‘sees’ 
a slit. According to the uncertainty relation certain edge dif-

fraction strength causes the particle to be diffracted according 
to the diffraction angle probability density function = �(�). 
All the shifted diffraction angle probability density functions 
of the different sound particles add up to the screen transmis-

sion function. 

The implementation is equal to the implementation of scatter-
ing. Again a number of � new sound particles is generated 
and equally distributed around the incident angle. Their en-
ergy is weighted regarding eqn. 1 and �  is defined such that 
the energy from − $

� < � < $
� is in sum 1. 

RE-UNIFICATION OF SOUND PARTICLES 

Exponential growth of the number of sound parti-
cles with split-up of sound particles due to reflec-
tion or scattering 

To explain the growth of the number of sound particles due 
to split-up, we first abstract from the complete SPSM to the 
growth of a tree-structure (see Figure 5). The ordinate % of 
the tree is interpreted as the reflection order (including scat-
tering and diffraction events) and the abscissa & of the tree-
structure as the rolled up circumference of the scene. While 
in reality, after every reflection, the sound particle is on the 
circumference of the scene, it is in the tree symbolically on a 
node (&, %), representing its location & on the circumference 
after % reflections. Without split-up (typically with only 
geometric reflections) the number of sound particles remains 
constant to the number of emitted sound particles �. With 
split-up of sound particles due to diffraction (at transparent 
walls between convex sub-scenes) or scattering, the number 
of tree nodes (i.e. the number of sound particles) growths 
exponentially. The growth of such a tree-structure is shown 
in Figure 4a without and Figure 4b with split-up of sound 
particles.  

 

a) Structure of the tracing of four sound particles without 
split-up 

 

 
b) Structure of the tracing of one sound particle with split-up 
into two with each iteration (one additional sound particle i.e. 

� = 1) 

Figure 4. Distribution of sound particles particles traced over 
the first four reflections symbolically in a tree structure. The 
& - coordinate of every node represents the particle’s position 
on the circumference of the room, its % - value the reflection 

order. 

Idea of re-unification: Quantization of space and 
directions 

In the tree-structure with split-up (as in Figure 5b), the num-
ber of sound particles propagating in the same environment 
increases and thus the sound particles fill the environment 
with higher density. The interesting question is, if there are 
sound particles in such high density, which are equal or at 
least similar.  

To reduce the computation effort, the idea is to search for 
those similar sound particles to re-unify. This would be com-
pletely inefficient if the search for similarly running sound 
particles would be the whole time (The time for searching 
would exceed time for tracing the sound particles by far). 
Hence, Stephenson presented an approach [10], where re-
unification should only be allowed when sound particles 
intersect with the circumference (as sound particles do not 
change their direction between walls). Instead of the tedious 
searching for any similar sound particle, the sound particles 
are sorted into pre-defined memory spaces associated to 
small patches on the room’s surface. This is the idea of quan-
tization to allow re-unification adopted from the radiosity 
method. 

Radiosity method 

The radiosity method (also called radiance transfer method) 
is not a straight forward simulation like ray tracing, but cal-
culates an energy exchange between all parts of the surface.  

For the numerical implementation of the radiosity method, in 
a pre-processing phase, the whole surface is sub-divided into 
small patches and only once shape factors are computed de-
scribing energy transfer from any patch ( to each other ) (see 
Figure 5) [6]. 
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Figure 5. Separation of scene into small wall segments called 
patches. Shape factors for each patch-pair are calculated in a 
pre-processing step to describe the energy exchange between 

them. 

To compute the stationary distribution the method ends up 
with a large linear equation system to be solved. As inherent 
to its functional principle, only diffuse reflections can be 
calculated (“forgetting the past of the sound particle”). 

The interesting and inspiring point of this method in our con-
text is the re-unification of sound energy on each patch. The 
time dependent simulation consists of the organisation of a 
quasi-simultaneous energy exchange between patches. 

Sound particle logistics 

Even with a limitation of sound particle re-unification at wall 
intersections, still a very complicated part is the logistics of 
sound particles. In current sound particle simulation imple-
mentations, the sound particles are traced one after another 
(see Figure 1), but that inhibits a re-unification. For re-
unification of sound particles, several sound particles must, 
of course, exist simultaneously, as shown in Figure 6. 
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Figure 6. Comparison of sound particle propagation “one 

after another” (left) and quasi-parallel propagation (right) to 
allow re-unification 

The algorithm of the SPSM has to be changed to an energy 
redistribution technique. All energies have to be stored after 
each reflection, a re-unification has to be made, and (in most 
cases) a different sound particle has to be traced further. Af-
ter that there are only transient energy carriers left (the sound 
particles lose their ‘individuality’). 

Intersection points are steadily distributed over the circum-
ference (an infinite number of intersection points is possible). 
So a discretization of the positions and directions of a sound 
particle is necessary to recognize sound particles ‘similar’ to 
re-unify them. A similarity of sound particles to be re-unified 
is given if sound particles have: 

• a similar intersection point with the room surface 
(i.e. practically hit the same patch), 

• travel into a similar direction and  

• hit the intersected wall about at the same time or 
travelled total distance from source.  

Therefore, a quantization has to be performed with respect to 
these three variables.  

The energy itself is not quantized. The energies of formerly 
different incident particles are traced in a combined sound 
particle that carries the sum of all input particle energies. 

The idea of the quantization of positions on the surface is 
overtaken from the radiosity method; the idea of quantization 
of directions is retained from the SPSM.  

Hence, the whole method changes to a universal energy re-
distribution method allowing as well geometric or diffuse 
reflections as diffractions of arbitrary order without explosion 
of computation time. Thus, the combined “Sound Particle 
Radiosity Method” (SPRADM) is able to handle geometric as 
well as diffuse reflections or scatterings and diffractions in a 
unified way without explosion of computation time. The 
discretization of sound particles as well as the complex logis-
tics are part of the realisation of SPRADM. 

THE SOUND PARTICLE RADIOSITY METHOD 

The Algorithm of the SPRADM 

To realize the spatial quantization, in a pre-processing phase 
the whole circumference (in 3D: surface) of the ‘room’ is 
split up into patches of a specified length *+.  

The flow chart of SPRADM can be separated in two parts. 
First the matrix has to be initialised with energies from the 
original source to be traced. In the further steps these ener-
gies, i.e. the energy carriers, have to be traced through the 
scene. Both parts are shown in a flow chart in Figure 7. 

 

Figure 7. Flow chart of SPRADM. In an initialisation step 
(left) all sound particles for all sources (former two outer 
loops of SPSM, see Figure 1) have to be placed in the re-

unification matrix (RUM). The simulation itself works off the 
RUM. Sound particles are taken out of the RUM, traced for 

one iteration, and are added back to the RUM. 

Introduction of a quantization and re-unification 
matrix (RUM) 

For the implementation of the sound particle radiosity 
method (SPRADM), the usage of a re-unification matrix 
(RUM) is introduced. 

To realize the directional quantization, a special realisation 
technique is to substitute the sound particle direction by its 
end point, i.e. its target patch. To make the number of patches 
independent from the room size, it may be related to the 
mean free path length (MFPL) *.̅ A quantization factor 

+ (< 1) is then 


+ = -.
- ̅       (2a) 

Another quantization factor /+ (preferred below, /+ > 1) is 
the number of patches the circumference 1 is sub-divided in: 

/+ = 2
-.

= 2
- ̅ ∙

�
�.

    (2b) 
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During run-time of the simulation, every intersection point of 
a sound particle with the wall is moved to the middle of the 
patch (see Figure 8). 

  

Figure 8. Alteration of a current sound particle’s path by 
quantization of the end patch: the calculated hit point is 

moved to the middle of a patch. Automatically the start point 
of the next iteration is quantized. 

To allow a quasi-simultaneous particle tracing, the time when 
the sound particle hits the patch has to be quantized, too. This 
is the next step: the temporal quantization. Therefore the 
timeline from 3 = 0 to 3 = 4567 is quantized in time inter-
vals ∆3, where 4567 is the maximum time of interest. As a 
first approach (that is discussed in the later section on accu-
racy), these time intervals are made proportional to the patch 
length: 

∆3 ∙ 9 = *+ = 2
:.

,    (3a) 

where 9 is the speed of sound. The number of these time 
intervals is 

;<=>
∆? = @∙;<=>

-.
= @∙;<=>

2 ∙ /+.   (3b) 

The particle hit-times on the surface are moved to the middle 
of these time intervals. 

The adjustments to the middle of the patch as well as to the 
middle of the time interval become relevant in the next itera-
tion step. 

Sound particles shall be unified if they have the same start 
patch, end patch and time interval number. To find such iden-
tical sound particles, a re-unification matrix (RUM) is intro-
duced. The RUM is the core of the sound particle radiosity 
method as well as the main memory of the algorithm. The 
RUM reserves an entry for the energy of every possible 
sound particle. The size of this memory is big, as memory 
has to be reserved for any start patch to any end patch at any 
time (see Figure 9). 

 

Figure 9. A re-unification matrix reserves an entry for any 
start patch to any end patch at any time. 

The number of matrix elements A is the product of the num-
ber of possible start patches, the number of possible end 
patches (each being /+  according eqn. 2b) and the number of 
possible time intervals which is with eqn. 3b 

A = 2
-.

∙ 2
-.

∙ ;<=>
∆? = /+B ∙ @∙;<=>

2    (4) 

The number of matrix elements A, and with it the memory, 
increases with /+, i.e. with smaller patch lengths, to the 
power of three - the big problem of the sound particle radios-
ity method. Each matrix element (ME) of the RUM only 

stores the energy of the sound particle it represents; start 
patch, end patch and time are encoded in the position of the 
ME in the RUM. When two sound particles are identical after 
quantization, the energies of both sound particles are placed 
in the same ME, where they are added – the moment of re-
unification. The benefit is: they can be traced further on as 
one sound particle (even sound particles from different 
sources can be combined). By sorting every sound particle's 
energy into that matrix, an inefficient search for matching 
sound particles to combine is avoided.  

The filling of the RUM shall be shown for an example in 
Figure 10.  

 

a) initialization (first filling of the RUM with energies from 
the original source) 

 

b) split-up of a sound particle into four new ones and trans-
port of their energies to other matrix elements 

 

c) re-unification of two sound particles by adding a sound 
particle to an already set matrix element (green) 

Figure 10. Illustration of the RUM for some iteration steps. 
On the & − �&(�, every possible patch-patch-combination has 

an entry, while for every time interval a row is reserved 
(% − �&(�). 

After initialising the RUM with four sound particles (Figure 
10a), one of them is chosen for computation, and due to a 
split-up by scattering or diffraction, four new sound particles 
are placed back in the RUM (Figure 10b). The same in Figure 
10c, but one of the sound particles hits an already occupied 
ME (green). In that element the energies are added such that 
a re-unification takes place. The optimum sequence of han-
dling the sound particles (with the highest re-unification rate) 
can be summarized as “always the oldest sound particle first” 
(lowest row in the RUM). When using this sequence it is 
avoided, that a sound particle transports energy to a ME, 
from where another sound particle has already previously 
transported energy away. A second benefit when using the 
“oldest sound particle first” sequence, is that the maximum 
number of rows in the RUM needs not to be more than ac-
cording the maximum free path length *C67. This effect al-
lows a reduction of the memory afford, because only MEs 

from the actual time 3 to 3 + -<=>
@  need to be addressed. So a 

cyclic buffer can be used, which can be interpreted as a ‘va-
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lidity tube’ (or ‘cloud of occupied ME’) in the RUM as 
shown in Figure 11. 

 

Figure 11. When using the “oldest particle first” sequence, 
only a time range corresponding to the maximum free path 

length is valid. This is shown as a green validity tube. 

STATISTICAL ANALYSIS OF THE SOUND 
PARTICLE RADIOSITY ALGORITHM 

Degree of occupation of the RUM and the re-
unification rate 

To evaluate the re-unification rate in the RUM, the number of 
occupied matrix elements, i.e. the degree of occupation of the 
RUM, shall be considered in a statistical way. To explain this 
approach, the following quantities are defined:  

• A: number of matrix elements (ME) in the RUM  
• �F: number of occupied MEs (filled with sound 

energy). It can be understood as number of simul-
taneously existing sound particles. �F is the deci-
sive number that shall be expressed as a function of 
the number of iterations ( or order G 

• H: ratio of occupied MEs relative to the maximum 

number of MEs.  H = �F A"                
(`degree of occupation’ of the RUM) 

• N: number of sound particles emitted from the 
source(s) 

• S: additional number of sound particles generated 
recursively (see scattering section) 

• (: counter of all computed iterations (reflections, 
scatterings or diffractions) since emission 

• G: the classical reflection order, now including scat-
tering and diffraction 

exact definition of K: within one ‘order’ all sound particles 
(and MEs) of previous order �F(G − 1) (‘one layer’ in Fig-
ure 4) have to be handled once. Hence, the additional number 
of iterations is 

∆((G) = �F(G − 1),   (5a) 

or for the next order respectively 

∆((G + 1) = �F(G)    (5b) 

Regarding eqn. 5a, the number of computed iterations ( to 
reach order G can be calculated to: 

 ((G) = ((G − 1) + ∆((G) = ((G − 1) + �F(G − 1)(6a) 

Instead by this recursion formula, ((G) may also be expressed 
as the number of all occupied ME ever having existed:  

((G) = ∑ �F (M − 1)N
OP�  with �F(0) = � (6b) 

To distinguish both parameters ( and G Figure 4 can be con-
sulted. While the reflection order G can be seen as the layer, 
the number of iterations ( is the number of line segments 
below this layer (eqn. 6b). 

Now, the number of occupied MEs �F, the degree of occupa-
tion of the RUM and hence the re-unification rate shall be 
expressed as a function of ( or G. They depend in a compli-
cated way on different parameters, also strongly on the room 
shape. Nevertheless a statistical evaluation is tried in the 
following. 

Case without re-unification 

To demonstrate �F, it shall be considered without re-
unification, i.e. with an infinite number of MEs (A → ∞). 
Without split-up (� = 0) is �F = � = 9GS�3. With a split-up 
of sound particles (� > 0) with each iteration, the energy of 
one ME is taken out of the RUM and is distributed over 
� + 1 other MEs. So the balance (and recursion) formula for 
the number of occupied MEs in the RUM is 

�F(( + 1) = �F(() − 1 + (� + 1) = �F(() + �    (7) 

With the initial state �F(0) = � the direct function �F(() 
easily can be found: 

�F(() = � + ( ∙ �       (8) 

So, the number of occupied MEs grows linearly with the 
number of iterations (. 

More convenient, in the sense of what is in common use, is to 
express the growth of �F as a function of the order G. To 
reach the next order G + 1, according eqn. 5b, ∆((G + 1) =
�F(G) iterations to be computed. Also �F(G) MEs are occu-
pied before. To find the necessary recursion formula, eqn. 8 
can be consulted. Eqn. 8 presents the number of occupied 
MEs after ( iterations, when at beginning � MEs are occu-
pied. This statement is independent from previous processes. 
Hence, to compute the number of occupied MEs of order 
G + 1, the scheme of eqn. 8 can be used replacing � 
by �F(G) and ( by ∆((G + 1) additional iterations. This 
yields the recursion formula: 

�F(G + 1) = �F(G) + ∆((G + 1) ∙ � = �F(G) ∙ (1 + �)(9) 

Solving again the recursion with �F(0) = � yields 

�F(G) = � ∙ (1 + �)N   (10) 

So, the number of occupied MEs increases exponentially 
with o. The difference between the linear growth of �F as a 
function of ( (eqn. 8) and the exponential growth of �F as a 
function of G (eqn. 10) can be explained by accepting that the 
number of necessary iterations ( grows itself exponentially 
with the order G. The increasing number of sound particles is 
proportional to the computation time and, hence, makes the 
simulation inefficient and impossible for higher orders. 

Case with re-unification 

Now we consider that the total number of MEs A is finite 
(eqn. 4). Then, during the energy transfer iterations, there is a 
certain probability M� to meet an already occupied ME. This 
is the re-unification probability. The rest probability, i.e. to 
meet an unoccupied ME, is (1 − M�). The energy taken out of 
one ME is still distributed to � + 1 other MEs with each it-
eration, but only (� + 1) ∙ (1 − M�) empty ME will become 
occupied in addition, thus, the ‘growth- equation’ 7 mutates 
to 

�F(( + 1) = �F(() − 1 + (� + 1) ∙ (1 − M�) (11) 
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For statistics, we need a simple and reasonable assumption 
for pr. The standard assumption of statistical room acoustics, 
i.e. of reverberation theory, is the ‘diffuse sound field’. This 
means that 

a) the sound energy is homogeneously distributed 
in space and  

b) each direction is equal probable.  

So, the occupation of all start patches as well as the striking 
of all target patches on the surface is equal probable. Hence, 
all MEs in the RUM are equally probably occupied (at least 
after many iterations).  

With the assumption of equal distribution and the degree of 
occupation, the re-unification probability M� is assumed to be 
constantly the number of occupied ME relative to their total 
number A 

H = �F A" = M�    (12) 

Inserting eqn. 12 into eqn. 11 yields a new recursion formula 
for the occupied MEs with re-unification 

�F(( + 1) = �F(() − 1 + (� + 1) ∙ (1 − TU (V)
W ),     (13) 

where the initial value �F(0) is the number of originally 
emitted sound particles �. By some analysis, this recursive 
eqn. 13 can again be converted into an explicit function of ( 

�F(() = � ∙ XV + Y
Y�� ∙  A ∙ Z1 − XV[        (14a) 

with  X = 1 − Y��
W          (14b) 

The number of occupied MEs of the RUM may be interpreted 
as the number of simultaneously existing sound particles. It is 
shown in Figure 12 for different split-up degrees � compared 
with the number of simultaneously existing sound particles of 
the SPSM, i.e. without re-unification. 

 

Figure 12. Comparison of simultaneously existing sound 
particles of the SPSM (doted lines) and the SPRADM (solid 

lines) for different split-up degrees �. 

It can be seen, that for different split-up degrees � the in-
crease of the number of parallel existing sound particles is 
different. The graphs for the numbers of sound particles 
without re-unification are straight lines (eqn. 8), while with 
re-unification the number of simultaneously existing sound 
particles is much lower (for � = 0 even decreasing) due to 
re-unification (eqn. 14). The difference is the benefit of re-
unification.  

More comprehensive would it be, again, to discuss the num-
ber of occupied MEs as a function of the order G. The respec-
tive recursion formula for �F(G) can be deduced from 
eqn.14a in a similar way as eqn. 9 has been deduced from 
eqn. 8: The role of a former number of occupied ME, �, 
plays �F(G), the number of necessary iterations ( to reach 
�F(G + 1) (the number of ME of order G + 1) is ∆((G +

1) = �F(G) (both assumption as before). Thus, from eqn. 
14a follows  

�F(G + 1) = �F(G) ∙ XTU(N) + Y
Y�� ∙  A ∙ Z1 − XTU(N)[ (15a) 

with X = 1 − Y��
W     (15b) 

(During one generation of iterations of order G, all MEs have 
to be handled once. During this process, some MEs to com-
pute might receive sound particle energies, which will - as 
not yet handled itself- be transferred further together with the 
energy having been before in this ME. So, during one genera-
tion, some sound particles might be reflected, scattered or 
diffracted more than once. Thus, with re-unification, the 
definition of ‘order’ becomes doubtful; the effective order 
might be higher than assumed.)  

From this complex recursion formula the explicit function 
�F(G) can be computed only numerically. The result is here 
displayed just graphically (see Figure 13).  

 

Figure 13. Comparison of simultaneously existing sound 
particles of the SPRADM for different sizes of the RUM A as 

a function of the reflection order G (note the logarithmic y 
axes) 

It can be seen, that at low orders the number of occupied 
MEs, i.e. the number of simultaneously existing sound parti-
cles, per order growths exponentially (linear in a logarithmic 
scale, Figure 13) as expected without re-unification. After a 
critical order, the number of simultaneously existing sound 
particles converges to a constant value. Then, the number of 
iterations to be performed to manage one reflection order is 
constant, and so the computation times increase only linearly 
with the order G. The upper limit for simultaneously existing 
sound particles is hardly dependent on the split-up degrees 
for high split-up degrees and almost only dependent on the 
number of accessible RUM elements A. As can be directly 
derived from eqn. 14a, 

�F(G → ∞) = �F(( → ∞) = Y
Y�� ∙ A   (16) 

Eqn. 16 shows, that the degree of occupation  H = TU
W = Y

Y�� 

tends to full occupation for high split-up degrees �. If only a 
small portion 
 of the room’s surface is scattering or diffract-
ing, such that � = 
 ∙ � < 1, then the degree of occupation is 
< 1 2" . Without split-up (� = 0) the degree of occupation 
convergates even to zero. In the statistical assumption that is 
plausible, because no split-up compensates the re-unification 
(even if probability to re-unify is low in that case). 
 
The smaller the patches are, i.e. more patches for same scene, 
the lower is the re-unification rate M� and the closer is X to 1 
in eqn. 14b. Hence, a higher order is needed to suffer of re-
unification. To achieve a high re-unification rate and a reduc-
tion of computation time, it must be the aim to minimize the 
size of the RUM. 
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Different assumptions than the equally distributed 
MEs in the RUM 

The assumption of diffuse sound field, and with it the equally 
distributed MEs in the RUM, are only a first rough approxi-
mation. In reality, some patches in far corners are less proba-
bly occupied; others may be more probably occupied due to 
focussing effects. In later iterations, sound particles will 
again tend to concentrate there. So, with unequal distribution, 
the effective re-unification probability will be greater than 
�F A" , as if the ‘effective’ number of reachable MEs A would 
be smaller. Therefore �F will propably grow a bit slower 
than assumed in the following. 

The convex sub-division of large scenes generates sub-
scenes, where more sound particles exist simultaneously and 
thus the re-unification rate increases in such areas – at the 
cost of lower re-unification rates near areas with fewer sound 
particle density.  

Although there are less probably hit MEs, the memory does 
still have to be reserved. No reduction of memory can be 
expected.  

Measurement of computation times of the sound 
particle radiosity method and comparison to the 
sound particle simulation method 

The aim is to analyse the computation time of the new 
SPRADM compared with the SPSM in the classical way, i.e. 
as a function of the order G. The computation time of the 
simulation is proportional to the number of computed itera-
tions (, i.e. handlings of reflections, scatterings and diffrac-
tions.  

The classic sound particle simulation method (i.e. without re-
unification) as well as the sound particle radiosity method 
(i.e. with re-unification) have been implemented and simula-
tions for a simple rectangular room and a split-up degree 
� = 25 were performed.  

A problem for the statistical evaluation is: The maximum 
reflection order G, as a well known truncation criterion for 
the SPSM, can not be used directly for SPRADM, because 
not exact order is defined due to re-unification. On the other 
hand, an energetic truction criterion is in use (This is practi-
cally necessary to avoid almost endless oscillations of sound 
particles between close surfaces in pathological cases). Sound 
particles are aborted after their energy decreases by a factor 
of ^5V_. 

So, a new feature has to be introduced: the room absorption. 
A mean absorption degree for all surfaces is named `. On 
average, with each iteration, every sound particle loses en-
ergy according the factor (1 − `) due to absorption and ac-
cording 1 � + 1"  due to split-up. In these simulations, ` was 

set to 0.5 at all surfaces such that the factor a�bc
Y��d was about 

0.02. 

While every sound particle energy decreases with each order 
(i.e. ̂ 5V_ = 0.02N), a fictive mean order G to abort is 

GC67 = efg (hijk)
efg ( . �)     (17) 

which replaces the former definition of the reflection order G. 

 

 

 

The result for one of these simulations is shown in Figure 14. 

 

Figure 14. Comparison of computation time of SPSM (with-
out re-unification) and the SPRADM (with re-unification) as 

a function of order G for a simple rectangular room and a 
split-up degrees of � = 25 with logarithmic y - scale 

While the computation time grows exponentially for the 
SPSM, which is linear in logarithmic scale, the computation 
time of the SPRADM has a decreasing slope in logarithmic 
scale. That slope converges to a constant value in linear scale 
(not displayed here), i.e. the computation time per order be-
comes constant. That follows from the fact that with the 
SPRADM an almost constant number of sound particles are 
interchanged between the MEs of the almost fully occupied 
RUM (see Figure 13). This is a drastic increase of efficiency. 

On the other side, a quite high computation time for lower 
orders can be observed. This additional computation time can 
be described as an overhead due to searching (taking out and 
placing back sound particles energies) in the RUM. This 
storing time lets the overall computation time increase as 
long as there are only few re-unifications. The measured 
computation times for memory usage and actual sound parti-
cle tracing are displayed separated in Figure 15. 

 

Figure 15. Separation of computation time of the SPRADM 
with re-unification in memory, sound particle tracing and 

additional time due to different processes 

Further investigations showed that the time of memory usage 
is about proportional to the computation of particle tracing. 
The memory computation time has been here about 6 times 
as long as the computation time for particle tracing. There-
fore, for lower orders, the SPRADM is even more inefficient 
than the SPSM; it is only effective for higher orders. 

Accuracy compared to the SPSM 

Of course, the quantization of the room’s circumference (in 
3D: surface) lowers the accuracy of the simulation. To quan-
tify this accuracy loss, echograms for the SPSM and the 
SPRADM are compared. Again the rectangular shaped room 
has been chosen and a high number of � = 1000000 sound 
particles have been emitted to allow the SPSM to be used as a 
reference [11]. First evaluations were performed without 
split-up, because otherwise the computation times of the 
SPSM would be too large. The mean wall absorption was 
again set to ̀ = 0.5. Different echograms computed by the 
SPSM and the SPRADM for typical patch sizes are shown in 
Figure 16. The patch length is expressed as a portion of the 
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mean free path length (MFPL) by the factor 
+ according 
eqn. 2a. The receiver (detector) diameter has been 
stantly 1l. 

 

a) specific patch size 
+ = 1 10"  

 

b) specific patch size 
+ = 1 200"  

Figure 16. Comparison of echograms computed with 
SPRADM and different patch sizes with the unquantized 
SPSM for a specified listener position (diameter 1l) in a 

rectangular room. 

The echogram of the SPRADM with 
+ = 1 10"  , i.e. 10 
patches per MFPL, is totally different from the reference 
curve of the SPSM. But with smaller patches the echograms 
become more similar until the SPRADM with 
+ = 1 200"  
matches quite well the reference curve.  

In our investigation three kinds of errors were determined: 

• error in total energy  
• error in time interval 
• error in reverberation time 

The error in total energy is computed as the relative differ-
ence of the energy summations of the SPRADM echogram 
relative to the SPSM echogram. 

To compute an energetic error in time intervals, the absolute 
difference of energy in all small time intervals (of ∆3 =
10l�, reasonable to compute room acoustic parameters) is 
computed, summed up and normalised to the total energy of 
the SPSM echogram. 

The reverberation time 4 for SPSM as well as for SPRADM 
is computed with backwards integration of the echogram and 
linear regression. The displayed error is the relative differ-
ence in 4 between both simulation methods. 

All three errors are shown in Figure 17 based on the average 
over four echograms as presented in Figure 16. 

 

 

 

 

Figure 17. Relative errors of the SPRADM relative to the 
SPSM in total energy, energy in time intervals and in rever-

beration time as a function of the number of patches per 
MFPL without split-up 

First of all it can be seen, that the error in total energy as well 
as the error in the time intervals decrease with smaller 
patches, i.e. more patches per MFPL. One can see, that very 
small patches in the size of 1 200"  of the MFPL still cause an 
error in the time intervals of about 7%. The error of total 
energy decreases faster, as it is about 2% starting with a patch 
length of 1 50"  of the MFPL. The error of the reverberation 
time is very low and almost not dependent on the patch size. 
The reason is that the reverberation time is only a value for 
the mean energy loss in the room. Even when there are large 
errors in particle directions and intersections points, the mean 
energy loss of each sound particle matches quite well the 
energy loss of the SPSM. Even if now totally different sound 
particles are detected, the energy losses, and thus the rever-
beration times, are hardly modified. 

Further investigation showed, that all three errors are hardly 
dependent on the number of emitted sound particles, as long 
there are about 50 sound particles immitted at every patch.  

In the next step a split-up of sound particles is introduced and 
the same errors are computed as above. The errors for differ-
ent split-up degrees � are depicted in Figure 18. 

 

Figure 18. Relative errors of the SPRADM relative to the 
SPSM in total energy, energy in time intervals and in rever-
beration time for 100 patches per MFPL and different split-

up degrees 

All three errors increase with the split-up degree. That 
strange behaviour is not easy to understand, an influence of 
the split-up degree is not plausible (or if, then vice versa). To 
analyse this effect, an echogram of the SPSM and the 
SPRADM for a split-up degree of � = 25 is shown in Figure 
19. 
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Figure 19. Comparison of an echogram of SPRADM, SPSM 
and SPSM with reduced energy criterion for a specified lis-

tener position in a rectangular room 

The echograms show, that the error is generated in the late 
part of the echogram, where the SPSM has a lower energy 
than the SPRADM. Both simulations were aborted at the 
same minimum energy in the MEs. A diminishing of the 
minimum energy lets the level in the later part of the echo-
gram increase as more sound particles ‘survive’. The same 
effect occurs when the energies of several sound particles of 
each less than the minimum energy are added (‘re-unified’) 
in a ME. Then the minimum energy is exceeded by their sum 
and a computation of further iterations becomes possible. The 
result is the obeyed increasing accuracy of the SPRADM for 
higher split-up degrees. So, the apparent ‘error’ of the 
SPRADM is actually an error of the SPSM in the late echo-
gram. That effect indicates by the way that any minimum 
energy criterion actually should be avoided, because the low 
energies of many sound particles may cumulate. 

Also other quantised time intervals ∆3 proportional to the 
patch length were tested. No great difference in the accura-
cies showed up, as long the time intervals times 9 were not 
larger than the patch length. Even with shorter time intervals, 
no increase of accuracy could be found, because the error is 
superposed by the error of patch quantization. So ∆3 ∙ 9 = *+ 
(eqn. 3a) seems to be a good compromise. 

Optimum quantization of the SPRADM 

Finally the error depending on the patch length shall be esti-
mated quantitatively. Therefore the main error criterion of the 
SPSM is consulted. With the SPSM, the relative error of the 
immitted intensity � depends on the number �� of sound 
particles having crossed the detector (receiver). Assuming the 

law of a normal distribution, this reads � = ��
b� �" . With the 

SPRADM the distance of sound particles flying in parallel 
(freely varying with the SPSM) is always in the magnitude of 
the patch size. So, to keep the number of sound particles 
intersecting a receiver reasonable, the first approach is to 
couple the receiver size with the patch size. A reasonable 
assumption is to make them four times larger than the 
patches. So, now simulations with a flexible receiver diame-
ter of four times the patch length were performed; the errors 
are shown in Figure 20. 

 

Figure 20. Relative errors of the SPRADM relative to the 
SPSM for different patch sizes with variable receiver size of 

four times the patch length 

The errors are now only hardly dependent on the patch 
length, although the patch length variates from 1 200"  to 
1 10"  of the MFPL. The same investigation for a variable 
receiver size of forty times the patch length showed also quite 
constant errors only changing with a maximum factor of 2. 
These results lead to the final investigation in which the patch 
size is held constant, but the receiver diameter is varied. The 

results (see Figure 21) show the quite expected � = ��
b� �"  

law.  

 

Figure 21. Relative errors of the SPRADM relative to the 
SPSM in total energy, energy in time intervals and in rever-
beration time for constant patch size, but different receiver 

sizes. 

A good compromise of accuracy seems to be a receiver size 
of 10. . .20 times the patch length. Then the relative errors of 
the total energy and of the reverberation time are below 5%, 
the error in energy of time interval is about 10%.  

In real requirements the receiver size is not very flexible, as it 
leads to a decrease in the spatial resolution of sound simula-
tion. As a result the optimization condition has to be inverted: 

When a certain spatial resolution is wanted (which might be 
related to an average size of ‘small’ surfaces), the receiver 
size is fixed to that resolution. Based on the receiver size, the 
patch size of the SPRADM can be determined as about 10% 
of the receiver diameter (or smaller for higher accuracy). 

Finally other room geometries were investigated. Due to the 
large memory afford, only small and simple scenes could be 
computed. The results were quite the same as for the rectan-
gular room, even for non convex rooms (Except for cases 
with very close walls with a small angle between causing 
particle oscillations between the walls distorting the statis-
tics). 

CONCLUSION AND OUTLOOK 

We presented an energetic combined sound particle radiosity 
method as an algorithm for the computation of sound propa-
gation including reflections and scatterings of arbitrary order. 
By quantization of the surfaces (as with the radiosity method) 
and the angles (as with the SPSM) a re-unification is enabled.  

Sound paths are not computed one after another but almost in 
parallel utilizing a re-unification matrix (RUM). A statistical 
analysis showed that the RUM is nearly full for higher orders 
with split-up. Measurements showed a reduction of computa-
tion time from exponential to linear growth with split-up of 
sound particles. Without split-up, almost no re-unification 
takes place and the SPRADM becomes ineffective. 

Two concurring requirements determine the SPRADM. On 
the one hand, more and smaller patches let the accuracy in-
crease. On the other hand, fewer and larger patches increase 
the re-unification rate and thus the efficiency. The optimum 
patch size has to be determined for any application. 
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The main problem of the algorithm is the huge memory ef-
fort, such that complex geometries cannot be computed with 
high accuracies. For low scattering orders the search over-
head in the memory pushes up the computation time.  

Further investigations will have to aim at a more efficient 
search in the RUM combined with a reduction of the neces-
sary memory space. Current research is devoted to reduce the 
size of the RUM by skipping the ‘same time’ criterion for re-
unification. To compensate this, no single sound particles, 
but groups of ‘younger and older’ sound particles on the 
same path (respectively partial echograms), are traced and 
stored in the new RUM. 

Before the memory problem is solved for the sound particles 
radiosity method, an implementation of quantised pyramidal 
beam tracing is not practicable, because its memory need is 
even greater. 
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