
Proceedings of the International Symposium on Room Acoustics, ISRA 2010

29–31 August 2010, Melbourne, Australia

Use of GPUs in room acoustic modeling and auralization

Lauri Savioja (1, 2), Dinesh Manocha (3), Ming C. Lin (3)
(1) Aalto University School of Science and Technology, Department of Media Technology, Espoo, Finland

(2) NVIDIA Research, Helsinki, Finland
(3) University of North Carolina, Chapel Hill, USA

PACS: 43.55.Ka

ABSTRACT

All room acoustic modeling techniques are computationally demanding due to the underlying complexity of sound
propagation. Traditionally, all the modeling methods have been implemented for the central processing unit (CPU) of the
computer. Recent trends in terms of programmable many-core processors or graphics processing units (GPU) is resulting
in a paradigm shift. Modern GPUs are massively parallel processors with a different memory hierarchy, whose peak
computational performance can be 10X more than that of current CPUs. In this paper, we give an overview of GPU
architectures and address issues in designing suitable algorithms that map well to GPU architectures. The room acoustic
modeling and auralization techniques are especially discussed in the light of possible GPU-based implementations.
We also give a brief overview of recent methods for geometric and numeric sound propagation that offer one order of
magnitude speedup over CPU-based algorithms.

INTRODUCTION

The traditional central processing units (CPU) are of a serial na-
ture, and they are designed to perform operations in sequential
order. Increase in CPU clock rates had guaranteed increasing
performance of single-core computers for the past few decades,
and performance of CPUs has closely followed the growth rate
predicted by Moore’s Law. The Moore’s Law still holds and
the amount of transistors on a single chip are still increasing.
However, the clock rates are not increasing anymore due to the
power and energy requirements. Instead, the main efforts in
terms of improving the performance is to use multiple cores on
the same chip, as opposed to making a single core faster.

The development of processors with multiple cores has led
to two kinds of architectural trends. These include multi-core
CPUs, which consist of best-performing serial cores. Exam-
ples of such processors include quad-core CPUs from Intel,
AMD and other vendors. The second trend has been on de-
sign of heterogeneous architectures that combine fine-grain
and coarse-grain parallelism using tens or hundreds of pro-
cessors or cores. These processors are currently available as
accelerators or many-core processors, which are designed with
the goal of achieving higher parallel code performance. The
demand for these accelerators is arising from consumer appli-
cations including computer gaming and multimedia. Examples
of such accelerators include the graphics processors (GPUs),
Cell processor and other data-parallel or streaming processors.
Moreover, some recent industry announcements are pointing
towards the design of heterogeneous processors and computing
environments, which are scalable from a system with a sin-
gle homogeneous processor to a high-end computing platform
with tens, or even hundreds, of thousands of heterogeneous
processors.

One of the most widely used example of a commodity many-
core processor is the current programmable graphics processing
unit (GPU). For example, current top-of-the-line GPUs from
AMD/ATI or NVIDIA have tens or hundreds of simpler cores

and high memory bandwidth, i.e. 10X more than current CPUs.
This can result in much higher parallel code performance for a
variety of applications. One of the very first applications that
highlighted the potential of GPUs was the use of rasterization
hardware to compute Voronoi diagrams in 2D and 3D and
interactive motion planning in complex static and dynamic
environments [1]. Over the last 11 years, computational power
of GPUs has been exploited for scientific, database, geometric
and imaging applications (i.e. GPGPU or use of GPUs for
general purpose applications). In many cases, one order of
magnitude performance gain was shown as compared to top of
the line CPUs [2, 3]. The recent trend has been to use GPUs
as co-processors for high performance computing and design
high performance systems that can achieve sustained PetaFlop
performance such as the recent Nebulae supercomputer 1.

COMPUTATION ON GPU

The current GPUs are regarded as high-throughput processors.
They were initially designed and optimized to generate real-
istic images based on graphics rasterization algorithms. Over
the last decade, the main trend has been in terms of GPUs
becoming more general-purpose with a strong focus on achiev-
ing performance through high parallelism. Current high-end
GPUs have a theoretical peak speed of up to a few Tera-FLOPs,
thus far outpacing current CPU architectures. Specifically, there
are several features that distinguish GPU architectures from the
multi-core CPU systems and also make it harder to achieve peak
performance. Still, the main use of GPUs is to generate realistic
images. As a result, many of the architectural design features
are mainly optimized for high rasterization performance, though
the recent GPUs such as NVIDIA’s Fermi architecture [4], in-
clude better support for general purpose parallel programming
and double precision computation. In the rest of the section, we
will review how the current GPUs operate.

1http://www.top500.org/lists/2010/06/press-release

ISRA 2010 1



29–31 August 2010, Melbourne, Australia Proceedings of the International Symposium on Room Acoustics, ISRA 2010

Global off-chip memory

GPU

SM Multiprocessor

SIMT Control

SP

Shared on-chip memory

SP SPSP SP SP SP SP

SM Multiprocessor

SIMT Control

SP

Shared on-chip memory

SP SPSP SP SP SP SP

SM Multiprocessor

SIMT Control

SP

Shared on-chip memory

SP SPSP SP SP SP SP

Interconnection Network

DRAM DRAM DRAM

Figure 1: GPU Architecture: There are several streaming multiprocessors (SM) connected to each other with a fast interconnection
network. Each SM has multiple streaming processors (SP) and a fast-access shared memory. A larger global memory with slower access
is located off-chip.

GPU Architectures

Most of the modern GPUs operate on single-instruction
multiple-data (SIMD) basis. Moreover, these computations
are performed by simultaneously executing a high number of
threads. A schematic illustration of a GPU structure is shown in
Fig. 1. It shows that the GPU contains several streaming multi-
processors (SM) each of them containing a number of streaming
processors (SP), a small shared memory and a control unit. All
the SMs are connected to each other by a fast network. In addi-
tion, there is a global memory area that is accessible to all the
SMs.

From performance point of view, a typical GPU memory system
or hierarchy provides more bandwidth as compared to CPU
memory systems, but has a higher latency. Moreover, only the
very recent GPUs have a real two-level cache-hierarchy, though
the GPU cache sizes are much smaller than CPU caches. In the
older GPUs there was only a one-level read-only cache that was
efficient in reducing the memory bandwidth but could not help
that much in reducing the memory latency.

Program execution on GPU

Current GPUs have a relatively large number of independent
processing cores (SMs in Fig. 1). Each of these cores is opti-
mized to perform vector operations but runs at comparatively
lower clock rate, as compared to current CPU cores. The high
vector width - between 8 and 64 for current generation of GPUs
- also implies that any efficient algorithm needs to utilize data
parallelism to achieve high performance.

The programming of a GPU is done from the viewpoint of using
multiple threads. Specifically, on current GPUs they are grouped
into warps of multiple threads that are executed on a single SM
(streaming multiprocessor). Inside one warp the processing is
performed in a parallel manner, such that each thread issues
the same instructions at a time, if any. This means that there
is an immediate performance drop if there is any divergent
branching inside a warp since it means that essentially all the
threads perform all the branches. However, different SMs can
have completely different execution patterns with no extra cost.

Each SM on the GPU can handle several separate tasks in
parallel and switches between different tasks in hardware when
one of them is waiting for a memory fetching operation to
complete. This hardware multithreading approach is designed
to hide the latency of memory accesses and used to perform
some other work in the meantime. Thus, it is essential to have
lots of threads in execution at once. In practice, there should be
at least thousands of threads in one launch.

Programming tools

In the early days of GPGPU computation, the programming was
performed using graphics APIs (application programming inter-
face) such as OpenGL and DirectX. In practice, there were no
constructs to support general computation and everything had
to be posed as a graphics rasterization problem. A significant
improvement happened when realtime programmable shaders
were introduced on the UNC PixelFlow system [5] and were
available on commodity GPUs in 2001 [6]. Only the introduc-
tion of CUDA (compute unified device architecture) in 2006
by NVIDIA brought the GPU computation to the mainstream
and lead to the wide acceptance [7]. At the moment it is the
most popular tool for GPU programming although it is a vendor
specific API. An open alternative called OpenCL has been intro-
duced lately by the Khronos Group and is supposed to provide
a vendor-independent interface that should make it possible to
program all future generations of GPUs [8].

Performance considerations

At a general level, it is good to remember that the maximum
speedup achievable with parallelization is dictated by the Am-
dahl’s law [9]:

Smax =
1

(1−P)+(P/N)
(1)

where P is the fraction of computation that is parallelizable,
and N is the number of parallel processors. The formula shows
that if there is a large non-parallelizable part (1−P) it starts to
dominate the maximum speedup. On current GPUs N is already
quite large, in the order of hundreds, and taking full advantage
of them requires that P is close to one, in practice well above
0.9. To have even theoretical possibility for a 100-fold gain P
must be at least 99%. This means that not all computational
tasks or algorithms suit well for GPU computation, and it is
worth considering only such problems that can be parallelized
to numerous independent tasks, often cited as embarrassingly
parallel problems.

The architectural characteristics of current GPUs impose some
challenges on the programmers or application developers. In
particular, the two main governing factors in terms of high GPU
performance are [10]:

1. Provide a sufficient number of parallel tasks so that all
the cores are utilized;

2. Provide several times that number of threads for each
core. This is useful when some of the threads are waiting
for data from relatively slow memory accesses, and the
core is able to execute the instructions in another thread.

2 ISRA 2010



Proceedings of the International Symposium on Room Acoustics, ISRA 2010 29–31 August 2010, Melbourne, Australia

In addition, the GPU memory hierarchy affects the achievable
performance. The on-chip shared memory seen of Fig. 1 can be
used as cache, but it can be utilized directly as well. This on-chip
memory is much faster than the global memory, and it should
be utilized if maximum performance is targeted. However, use
of that memory, beside cache usage, needs special attention and
more skills of the programmer. To learn more about general
performance optimization on GPUs see e.g. [7].

RAY-BASED MODELING AND GPU

In ray-based room acoustics, also called geometric acoustics
(GA), sound is supposed to act as rays and the wavelength of
sound is considered to be zero. This means that sound would
propagate in straight lines and some other wave-phenomena,
such as interference, are not modeled at all. This approach
can be valid for high frequencies, and is widely used in room
acoustic prediction. In these modeling techniques the main
issues to be modeled are:

• Sound propagation in air
• Specular reflections
• Diffuse reflections
• Edge-diffraction

In the list above, the edge-diffraction is an exception to the GA
approach as diffraction is actually a wave-based phenomenon.
However, it has been noted that to make reliable simulations
it has to be incorporated by some means. There are several
different techniques to model edge-diffraction but the most
commonly applied ones in room acoustics are the Biot-Tolstoy-
Medwin (see, e.g. [11]) and the Kirchhoff approximations (see,
e.g. [12]). To be even more exact, it is worth noting that diffuse
reflection is neither a ray-based phenomenon, but caused by
non-local reaction on the surface and by edge-diffraction of
surface irregularities.

Ray-based modeling techniques

Ray-based acoustic modeling dates back to late 60’s when the
acoustic ray-tracing was introduced by Krokstad et al. [13].
There are several alternative modeling techniques based on
this approach. For a long time these methods concentrated on
finding the specular reflections in the room. One widely used
GA technique is the image-source method [14]. It is accurate
and is guaranteed to find all the reflection paths whereas ray-
tracing statistically samples the path space and as the number
of rays increases it asymptotically converges to the accurate
solution.

Beam-tracing is an acceleration technique of the basic image-
source method [15], [16]. It is still an accurate method, but
avoids most of the geometrical intersection computations of the
original image-source method. Laine et al. [17] have presented
optimization techniques making it possible to compute image
sources at interactive rates even in modest size geometries, but
only for static scenes with fixed source locations. Another track
of improvements to beam-tracing is formed by approximate
methods that are not guaranteed to find all of the reflection
paths. By this means it is possible to achieve remarkable perfor-
mance gains as in the AD-frustum-tracing system that is able to
handle even edge-diffraction with a uniform theory of diffrac-
tion (UTD) model [18]. These methods were demonstrated on
multi-core CPUs, but it should be possible to port to many-core
GPUs.

Ray-tracing has several further developed variants such as sonel
mapping [19] and phonon mapping [20], and both these map-
pings are closely related to the photon mapping used in global
illumination computation in computer graphics.

The room acoustic rendering equation is a unifying mathemat-
ical framework that covers all the GA modeling techniques
[21]. Based on that equation, Siltanen et al. present a novel
modeling technique called acoustic radiance transfer (ART). It
is a generalized version of the radiosity method. In radiosity
all the reflections are assumed to be diffuse such that in a re-
flection the outgoing direction of a ray is independent of the
incoming direction whereas in ART there are so called BRDFs
(bi-directional reflectance distribution functions) that determine
the reflection characteristics of a surface more accurately.

Ray-tracing in computer graphics

Visual ray-tracing was one of the first applications to take ad-
vantage of the parallelism on the GPUs [22]. It is worth noting
that GPUs have been designed and optimized to rasterize tri-
angles, and traditionally ray-tracing was performed on CPUs.
Ray-tracing is a good example of embarrassingly parallel prob-
lems, at least for static scenes where a hierarchy is precomputed.
To make realistic images, tracing of thousands or even millions
of rays is necessary and all of them are independent of each
other and thus can be processed in parallel.

Over the last few years, there has been renewed interest in de-
veloping fast ray tracing algorithms on GPUs [23]. The same
principles are applicable also in acoustic ray-tracing. In prac-
tice, all the ray-tracing systems use some spatial data structure
to subdivide the space into smaller volumes or use bounding
volume hierarchies (BVHs). For dynamic scenes, these hierar-
chical data structures can also be computed in parallel using
GPU architectures [24, 25]. This implies that it is possible to re-
duce the number of required intersection computations between
rays and polygons forming the space. Moreover, the actual ray
tracing is performed at two levels. On the first one, the rays
are traced on the intermediate nodes of the hierarchy. On the
second level, the intersections between the ray and the polygons
in one subvolume are computed. If the ray hits a surface, it gets
reflected, and in the other case tracing is continued to the next
subvolume. There are several alternatives in selection of the
most suitable data structure. For dynamic scenes, the BVHs
can be easily updated and therefore, can offer improved perfor-
mance. In addition, it is essential to organize the ray traversal
on GPU such that inside one warp the threads have maximally
similar execution patterns [26]. However, it is not necessary to
program a ray-tracer from scratch any more as there are exist-
ing highly optimized ray-tracing libraries for GPUs such as the
OptiX by NVIDIA [27].

Use of GPUs in geometrical acoustics

There are several operations in GA models that can be par-
allelized. Below we will concentrate on the following three
operations that are often needed in modeling:

• Geometrical computations
• Wave-based diffraction computations
• Convolutions

Accelerating ray-tracing

The first studies in which GPUs were used in acoustic ray-
tracing date back to 2004 and 2007 [28, 29]. After that there has
been lots of progress in visual ray-tracing as discussed above,
and there are remarkable possibilities to speed-up acoustic ray-
tracing as well.

Geometric models in graphics tend to be several orders of mag-
nitude more complicated than typical acoustic models. One
reason for this has been the limited computation capacity, and
now introduction of GPU ray-tracing enables use of much more
complex models in acoustic modeling as well. However, use of

ISRA 2010 3



29–31 August 2010, Melbourne, Australia Proceedings of the International Symposium on Room Acoustics, ISRA 2010

more detailed models and thus smaller surfaces might degrade
the accuracy of simulations since the ray assumption of sound
is valid only when the surfaces are large compared to the sound
wavelength. Thus use of smaller surfaces makes the valid band-
width narrower and only the highest frequencies are predicted
reliably unless edge diffraction is modeled appropriately. It is
still to be investigated, what would be the optimal geometric
accuracy in ray-based room acoustic modeling.

The basic ray-tracing and image source methods are very similar
to each other from computational point-of-view. The most time
consuming part in both of them is reflection path traversal, and
finding the intersections between those paths and surfaces on
the model. One new study presenting use of GPU-based acous-
tics ray-tracing with highly complex models has been presented
by Taylor et al. in the i-Sound sound rendering system [30].
This system uses a modified image-source algorithm. It shoots
a fixed number of rays from each image-source to compute
the visible geometric primitives. These visible primitives are
used to compute higher order image sources based on specular
reflections and edge diffraction. However, the computation of
propagation paths from a source to the listener is decoupled
from visible surface computation. In order to obtain higher
performance, a novel multi-viewpoint ray tracing algorithm is
used to compute the visible surface from each image-source
in parallel on current GPUs. Given the fact that the overall
approach decouples visibility computation from propagation
paths, this approach needs to trace relatively fewer rays as com-
pared to prior ray tracing based GA algorithms. The resulting
parallel image source computation algorithm is able to trace
more than 20 million rays/second on a NVIDIA GTX 280 GPU
from different viewpoints to perform visibility computations.
The performance of the propagation algorithm is directly pro-
portional to the number of rays that can be traced in parallel. At
a given resolution, the overall propagation algorithm is able to
compute most of the propagation paths from the source to the
listener, i.e. more than 95% of the paths for 3 orders of reflec-
tion and one order of diffraction. The accuracy is very high for
the direct contributions and 1st order reflections, and decreases
with the higher order of reflections. Moreover, i-Sound can
handle dynamic scenes (with moving objects, sound sources or
listener positions) that are commonly used in computer games
at interactive rates (20-30fps).

Diffraction computation and GPU

Incorporation of diffraction into GA models is an essential
factor in making them reliable at lower frequencies. Tsingos et
al. have presented an efficient technique to compute first-order
reflection and diffraction with the Kirchhoff approximation [31].
They are able to update the simulation results at interactive rates
even in complex models containing almost 100 000 triangles.
However, this model is only for first-order reflections, and to
produce full-length impulse responses some other technique
should be used to complement the response. Taylor et al. [30]
also provide an approximate edge-diffraction algorithm based
on ray tracing and UTD model. It has been used to perform first
order diffraction on models with tens of thousands of triangles
at interactive rates on current GPUs. It is worth noting that in
the wave-based methods there is no need for separate treatment
of diffraction since they model diffraction inherently.

Convolution and GPU

The frequency-domain acoustic radiance transfer is a technique
suitable for real-time auralization [32]. In that method the num-
ber of required convolution operations is remarkable in complex
models. Those are needed both in the energy transfer between
surface patches and in the auralization. Computationally it is ad-
vantageous to perform those operations in the frequency-domain

since in that domain a convolution is simply a point-wise multi-
plication of two vectors, and thus fully parallelizable for a GPU
implementation.

WAVE-BASED MODELLING AND GPU

The most accurate room acoustic modeling results can be achieved
with the wave-based modeling techniques that directly aim
at solving the wave equation numerically. The most common
methods in this category are the finite-difference time-domain
(FDTD), finite-element (FEM) and boundary element (BEM)
methods [33]. All of them are parallelizable and thus attractive
for GPU implementation. Another advantage of wave-based
modeling is that those methods typically solve the equation in
the whole space whereas the GA methods most often compute
the solution only to predetermined listener locations.

It has been shown that with the use of GPUs, even the bound-
ary element method can be used to solve acoustic problems
of realistic size [34]. Even more impressive results can be ex-
pected if the fast multipole variant (FMM) of the BEM has been
implemented in the acoustic domain [35].

Finite-difference time-domain simulation

Digital waveguide mesh is a variant of the FDTD technique
having its background in digital signal processing [36, 37]. In
one of the first studies regarding use of GPUs in acoustics,
the digital waveguide mesh was successfully accelerated by
using a GPU to update the mesh [38]. They report close to 70-
fold performance gains at best when compared to a pure CPU
implementation.

In a more recent study, the FDTD simulation has been shown
to be capable of real-time simulation of room acoustics at low
and mid-frequencies [39]. In their system there is no separate
convolution operation as the dry audio signal is directly fed
into the FDTD mesh. The output signal is picked from the
mesh node determined by an arbitrarily moving listener. In a
model consisting of 150,000 nodes the achieved update rate
was 7kHz. This amount of nodes is sufficient to model a living-
room sized space discretized with 8cm regular grid. However,
the FDTD methods suffer from dispersion that limits the valid
bandwidth of simulations, thus in practice the result of that
7kHz simulation is usable only up to ca. 1kHz.

It is worth noting that in all wave-based methods using a volu-
metric grid, such as the FDTD and FEM, the computational load
grows as a function of the fourth power of the grid spacing. This
means that doubling the frequency band induces 16-fold amount
of computation. If the currently reached 1kHz valid bandwidth
would be expanded to 20kHz, the grid spacing should be only
1/20th of the current spacing thus increasing the load by a factor
of 204 = 160 000. However, it is possible to apply some off-line
processing, such as frequency warping, to the resulting impulse
response to decrease the dispersion and thus increase the valid
bandwidth without increasing the FDTD mesh density [40]. In
any case, covering the whole audible band with an FDTD sim-
ulation in real-time is still quite far away. At the moment it is
possible to compute impulse responses off-line for concert-hall
sized spaces valid up to 1kHz. For example, the volume of the
Amsterdam Concertgebouw hall is ca. 21,000m3, and if that
is disrcetized with a 7cm grid corresponding to 8kHz update
rate, the amount of nodes is around 50,000,000. Handling that
on a GPU-based FDTD solver is not a problem, and a two sec-
ond impulse response computation with frequency-independent
boundary conditions would take only a few minutes. Adding
more realistic frequency-dependency to the model increases
the computation time. The actual increase depends on the pro-
portion of the boundary nodes and of the complexity of the

4 ISRA 2010



Proceedings of the International Symposium on Room Acoustics, ISRA 2010 29–31 August 2010, Melbourne, Australia

boundary, but in practical cases the increase is reported to be
below 50% [39]. As the GPUs still improve rapidly, this com-
putation is most likely to still get faster in the near future.

Adaptive Rectangular Decomposition (ARD)

Recently, Raghuvanshi et al. [41, 42] have introduced the adap-
tive rectangular decomposition approach to numerically solve
the acoustic wave equation. This approach assumes a homoge-
neous medium in which the speed of sound is constant. The
main benefit of ARD is in terms of dispersion errors. Numerical
errors in wave equation solvers arise from discrete approxima-
tion of the differential operators in time and space. In case of
FDTD algorithms, these errors manifest as numerical dispersion
– all frequencies don’t travel with the same speed and this leads
to accumulative errors that eventually destroy the waveform
being propagated. The ARD technique avoids such dispersion
errors – by decomposing the scene into non-overlapping rect-
angular partitions, the spectral basis can be chosen to satisfy
the Wave Equation directly. Assuming perfectly reflective walls
for the rectangles, the basis functions turn out to be Cosine
functions and it is possible to compute a closed form expres-
sion. The global solution is composed by coupling the interior
solutions via sixth-order accurate, finite-difference transmission
operators at the artificial interfaces. At the moment frequency-
independent boundaries are supported in the ARD technique,
and handling of frequency dependent boundaries still need fur-
ther research.

The ARD computation algorithm has two primary stages: a)
preprocessing the model, and b) numerical simulation to com-
pute the impulse responses. In the preprocessing stage, the input
scene is voxelized at the grid resolution and its size is deter-
mined by the maximum simulation frequency. This is followed
by a rectangular decomposition step in which adjacent grid
cells generated during voxelization are grouped into rectan-
gles. These rectangles correspond to air partitions. Next, the
algorithm generates artificial interfaces between adjacent rect-
angles and PML (perfectly matched layer) absorbing layers on
the scene boundary, and uses them as PML partitions. This
preprocessing is quite fast (1-2 minutes) for most scenes and
takes less time than the overall simulation. The second stage of
the algorithm corresponds to the numerical simulation that is
performed on the grid. This involves computing a closed form
solution within each partition and then updating the pressure
field at the boundaries of the grid.

ARD on GPUs

Recently, Mehra et al. [43] presented a GPU-based algorithm to
perform all the steps of numerical simulation of ARD on a GPU.
The underlying algorithm exploits two levels of parallelism a)
coarse grained and b) fine grained. Coarse grained parallelism
is due to the fact that each of the partitions (air or PML) solves
the wave equation in an independent manner. Fine grained
parallelism is achieved because within each partition all the
grid cells are independent of each other with regards to solving
the wave equation at a particular time-step. Therefore within
each partition all the grid cells can run in parallel exhibiting fine
grained parallelism. The resulting GPU-based acoustic solver
exploits both these levels of parallelism. It launches as many
threads in parallel as there are partitions. Each of these threads
performs the computations to solve the wave equation for a
particular partition. All these threads are grouped into blocks
and grids, and scheduled by the runtime environment on the
GPU.

The overall GPU-based wave equation solver is implemented
using the CUDA API. It is able to compute accurate impulse
responses for complex scenes using single precision arithmetic.

Figure 2: Sound simulation on a Cathedral. The dimensions of
this scene are 35m×15m×26m. The GPU-based ARD algo-
rithm is perform numerical sound simulation on this complex
scene on a desktop computer and pre-compute a 1 second long
impulse response in about 250 seconds with the maximum fre-
quency of 1,800Hz on NVIDIA Quadro FX 5800 GPU with
4GB memory.

The DCT and IDCT kernels are based upon the FFT library
developed by Govindraju et al [44]. The synchronization be-
tween different threads is performed during interface handling
and after each step of the simulation stage. The resulting solver
was implemented on Nvidia Quadro FX 5800 graphics card
with a core clock speed of 650 MHz, graphics memory of 4
GB with 240 CUDA cores. Its performance was also compared
with a CPU-based implementation of the FDTD algorithm run-
ning on a quad-core Intel Xeon X5560 (4 cores) with processor
speed of 2.8 GHz. It has been applied to many complex room
models corresponding to a Cathedral (shown in Fig. 2), train
station, and architecture models, whose volume varies between
7,000−83,000m3. The complexity depends on the number of
cells generated by rectangular decomposition and they vary
between 17−22 millions cells, when the maximum simulation
frequency is below 1500Hz. Each time-step of wave equation
solver takes about 250ms on the GPU, and is about 10X faster
than CPU-based ARD algorithm. Moreover, the GPU-based
ARD algorithm can be up to 500X faster over prior CPU-based
FDTD algorithms.

AURALIZATION AND GPU

A good overview on use of GPUs on auralization has been
presented by Tsingos [45, 46]. In the context of this paper,
the term auralization means the process of making the room
acoustic modeling results audible. There are various techniques
to implement auralization, but in practice the main workload
is in audio signal processing. Especially, the most commonly
needed operation is filtering. Basically there are two filter types:
finite impulse response (FIR) or infinite impulse response (IIR)
filters. The first of them is easily parallelizable for GPU [47, 48]
whereas efficient parallel implementation of an IIR filter is still

ISRA 2010 5



29–31 August 2010, Melbourne, Australia Proceedings of the International Symposium on Room Acoustics, ISRA 2010

an open problem, although there have been proposals to improve
their performance on GPU [49].

Convolution

One of the first applications of GPUs in auralization was sound
spatialization for headphones. This head-related transfer-function
(HRTF) computation has been studied for example by Gallo
and Tsingos already in 2004 [50], and by Cowan and Kapralos
[51, 52]. They were able to reach over 20-fold performance gain
over CPU implementation. They all performed the convolution
in the time-domain whereas Siltanen et al. use GPUs for HRTF
convolution in the frequency domain [32].

Fourier transforms

As already mentioned, it is sometimes advantageous to perform
the convolutions in the frequency-domain. For this reason, it
is important to have an efficient fast Fourier transform (FFT)
available. Utilization of GPUs in FFTs has been investigated
a lot, and the results are impressive [44]. Savioja et al. have
compared the performance of a GPU and CPU FFT libraries in
real-time audio signal processing showing that a GPU is able
to handle in real-time 8-times as long FFTs as a CPU-based
implementation [48].

CONCLUSIONS

All the modern GPUs are suitable for parallel tasks such as
ray-tracing or ray-frustum tracing. Current GPUs consist of
hundreds of cores that can provide order of magnitude more
computation power that current CPUs. In room acoustics they
have been successfully utilized both in ray-based and wave-
based methods. The achieved performance gains have been re-
markable. The current trend in computing industry is to design
multi-core and many-core processors and the number of cores
are expected to increase at rate given by Moore’s Law. As a
result, all future algorithms for sound propagation and auraliza-
tion need to exploit these parallel capabilities, see, e.g., [53, 54].
Audio signal processing is another area where GPUs can pro-
vide noticeable speedups. So far, HRTF filtering has been the
main application of GPUs in the area, but any FIR filter would
benefit from parallelization. However, it is worth noting that
performing the signal processing operations on GPUs typically
introduces some extra latency.

There are some challenges in use of GPU. Their memory hier-
archy and performance is quite different than that of CPUs and
one needs to design different kind of methods that can map well
to GPUs. Furthermore, the on-chip memory on GPUs is limited
(e.g. 4GB on current GPUs) and this can impose constraints
on the size or volume of models that can be simulated. Finally,
the programming environments for GPUs are quite different
and the performance of the algorithms can vary considerably
on different GPUs.

In additon to current GPUs, some future processors with a high
number of cores may provide more flexibility and programma-
bility. These include Intel’s Many Integrated Core (MIC) archi-
tecture or AMD’s Fusion processor, which could provide high
throughput for acoustic modeling and auralization.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Timo Aila from NVIDIA
Research for commenting the manuscript. This work was sup-
ported by the Academy of Finland (Project #130062). Dinesh
Manocha and Ming C. Lin’s work has been partially supported
by Army Research Office, National Science Foundation and
RDECOM.

REFERENCES

1 K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha.
Fast computation of generalized Voronoi diagrams using
graphics hardware. Proceedings of ACM SIGGRAPH, pages
277–286, 1999.

2 J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,
A. Lefohn, and T. Purcell. A survey of general-purpose
computation on graphics hardware. Computer graphics
forum, 26(1):80–113, 2007.

3 D. Manocha. General-purpose computations using graphics
processors. Computer, 38(8):85–88, 2005. ISSN 0018-9162.
doi: http://dx.doi.org/10.1109/MC.2005.261.

4 NVIDIA Corporation. NVIDIA’s next gen-
eration CUDA compute architecture: Fermi.
http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf,
accessed June 10th, 2010.

5 M. Olano and A. Lastra. A shading language on graphics
hardware: The pixelflow shading system. Proc. Of ACM
SIGGRAPH, pages 159–168, 1998.

6 E. Lindholm, M. Kilgard, and H. Moreton. A user-
programmable vertex engine. SIGGRAPH ’01: Proceedings
of the 28th annual conference on Computer graphics and in-
teractive techniques, Los Angeles, CA, USA, August 2001.

7 NVIDIA Corporation. NVIDIA CUDA programming guide.
pages 1–147, 2009.

8 Khronos Group. OpenCL overview.
http://www.khronos.org/opencl/, accessed June 6,
2010.

9 G. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proc. of
the AFIPS Spring Joint Computer Conf., pages 483–485,
1967.

10 C. Lauterbach, Q. Mo, and D. Manocha. gProximity: Hier-
archical GPU-based operations for collision and distance
queries. Computer Graphics Forum (Proc. Of Eurograph-
ics), 28(2), 2010.

11 T. Lokki, U.P. Svensson, and L. Savioja. An efficient au-
ralization of edge diffraction. In Proc. AES 21st Int. Conf.
on Architectural Acoustics and Sound Reinforcement, pages
166–172, St. Petersburg, Russia, June 2002.

12 N. Tsingos, C. Dachsbacher, and S. Lefebvre. Instant sound
scattering. Proc. of the 18th Eurographics Symposium on
Rendering, 2007.

13 A. Krokstad, S. Strom, and S. Sorsdal. Calculating the
acoustical room response by the use of a ray tracing tech-
nique. J. Sound Vib., 8(1):118–125, 1968.

14 J. Allen and D. Berkley. Image method for efficiently sim-
ulating small-room acoustics. Journal of the Acoustical
Society of America, 65(4):943–950, 1979.

15 U. Stephenson. Quantized pyramidal beam tracing - a new
algorithm for room acoustics and noise immission prognos
is. ACUSTICA - acta acustica, 82:517–525, 1996.

16 T. Funkhouser, I. Carlbom, G. Elko, G. Pingali, M. Sondhi,
and J. West. A beam tracing approach to acoustic modeling
for interactive virtual environments. In SIGGRAPH ’98:
Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, pages 21–32, New
York, NY, USA, 1998. doi: http://doi.acm.org/10.1145/
280814.280818.

17 S. Laine, S. Siltanen, T. Lokki, and L. Savioja.
Accelerated beam tracing algorithm. Applied
Acoustics, 70(1):172–181, 2009. Available at
http://dx.doi.org/10.1016/j.apacoust.2007.11.011.

18 A. Chandak, C. Lauterbach, M. Taylor, Z. Ren, and
D. Manocha. AD-Frustum: Adaptive frustum tracing for
interactive sound propagation. IEEE Transactions on Visu-
alization and Computer Graphics, 14(6):1707 – 1722, 2008.

6 ISRA 2010



Proceedings of the International Symposium on Room Acoustics, ISRA 2010 29–31 August 2010, Melbourne, Australia

doi: 10.1109/TVCG.2008.111.
19 B. Kapralos, M. Jenkin, and E. Milios. Acoustical modeling

with sonel mapping. Proc. 19th Intl. Congress on Acoustics
(ICA), 2007.

20 M. Bertram, E. Deines, J. Mohring, and J. Jegorovs. Phonon
tracing for auralization and visualization of sound. IEEE
Visualization, 2005.

21 S. Siltanen, T. Lokki, S. Kiminki, and L. Savioja. The room
acoustic rendering equation. Journal of the Acoustical
Society of America, 122(3):1624–1635, 2007. doi: 10.1121/
1.2766781.

22 N. Carr, J. Hall, and J. Hart. The ray engine. In Proc.
Graphics Hardware, pages 1–10, September 2002.

23 S. Popov, J. Günther, H. Seidel, and P. Slusallek. Stackless
KD-Tree Traversal for High Performance GPU Ray Tracing.
Computer Graphics Forum (Proc. EUROGRAPHICS), 26
(3):415–424, 2007.

24 K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-tree
construction on graphics hardware. ACM Trans. Graph., 27
(5):1–11, 2008. ISSN 0730-0301. doi: http://doi.acm.org/
10.1145/1409060.1409079.

25 C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
Q. D. Manocha. Fast BVH construction on GPUs. Com-
puter Graphics Forum (Proc. Of Eurographics), 28(2):375–
384, 2009.

26 T. Aila and S. Laine. Understanding the efficiency of ray
traversal on GPUs. In Proc. High Performance Graphics,
HPG’09. New Orleans, LA, USA, July 2009.

27 S. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Ro-
bison, and M. Stich. Optix: A general purpose ray tracing
engine. ACM Transactions on Graphics, August 2010.

28 M. Jedrzejewski and K. Marasek. Computation of room
acoustics using programmable video hardware. In Proc.
International Conference on Computer Vision and Graphics,
ICCVG 2004, pages 587–592. Warsaw, Poland, September
2004. doi: 10.1007/1-4020-4179-9.

29 N. Röber, U. Kaminski, and M. Masuch. Ray acoustics
using computer graphics technology. In Proc. 10th Int.
Conference on Digital Audio Effects (DAFx-07), Bordeaux,
France, September 2007.

30 M. Taylor, A. Chandak, Q. Mo, C. Lauterbach, C. Schissler,
and D. Manocha. i-Sound: Interactive gpu-based sound
auralization in dynamic scenes. Technical report TR10-006,
Computer Science, University of North Carolina at Chapel
Hill, 2010.

31 N. Tsingos, C. Dachsbacher, and S. Lefebvre. Instant sound
scattering. In Proc. of the 18th Eurographics Symposium
on Rendering, June 2007.

32 S. Siltanen, T. Lokki, and L. Savioja. Frequency domain
acoustic radiance transfer for real-time auralization. Acta
Acustica united with Acustica, 95:106–117, 2009. doi: 10.
3813/AAA.918132.

33 U. P. Svensson and U. Kristiansen. Computational mod-
elling and simulation of acoustic spaces. In Proc. AES 22nd
Conf. on Virtual, Synthetic and Entertainment Audio, pages
11–30. Espoo, Finland, June 2002.

34 T. Takahashi and T. Hamada. GPU-accelerated boundary
element method for Helmholtz’equation in three dimen-
sions. International Journal for Numerical Methods in
Engineering, 80(10):1295–1321, 2009.

35 N. Gumerov and R. Duraiswami. Fast multipole methods
on graphics processors. Journal of Computational Physics,
2008.

36 S. Van Duyne and J. Smith III. The 2-D digital waveguide
mesh. In Proc. IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, New Paltz, NY, USA,
October 1993.

37 L. Savioja, T. Rinne, and T. Takala. Simulation of room
acoustics with a 3-D finite difference mesh. In Proc. Int.
Computer Music Conf., pages 463–466. Aarhus, Denmark,
September 1994.

38 N. Röber, M. Spindler, and M. Masuch. Waveguide-based
room acoustics through graphics hardware. In Proc. Inter-
national Computer Music Conference, New Orleans, LA.
USA, November 2006.

39 L. Savioja. Real-time 3D finite-difference time-domain
simulation of low- and mid-frequency room acoustics. In
Proc. Int. Conference on Digital Audio Effects (DAFx-10),
Graz, Austria, 2010.

40 L. Savioja and V. Välimäki. Interpolated rectangular 3-D
digital waveguide mesh algorithms with frequency warping.
IEEE Transactions on Speech and Audio Processing, 11(6):
783–790, Nov. 2003.

41 N. Raghuvanshi, B. Lloyd, N. Govindaraju, and M. Lin. Ef-
ficient numerical acoustic simulation on graphics processors
using adaptive rectangular decomposition. In Proc. EAA
Symposium on Auralization, Espoo, Finland, June, 2009.

42 N. Raghuvanshi, R. Narain, and M. Lin. Efficient and accu-
rate sound propagation using adaptive rectangular decompo-
sition. IEEE Transactions on Visualization and Computer
Graphics, 15(5):789 – 801, 2009. doi: 10.1109/TVCG.2009.
28.

43 R. Mehra, N. Raghuvanshi, M. Lin, and D. Manocha. Effi-
cient GPU-based solver for acoustic wave equation. Tech-
nical report TR10-007, Computer Science, University of
North Carolina at Chapel Hill, 2010.

44 N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and
J. Manferdelli. High performance discrete Fourier trans-
forms on graphics processors. In Proc. SC ’08: ACM/IEEE
conference on Supercomputing, November 2008.

45 N. Tsingos. Using programmable graphics hardware for
auralization. In Proc. EAA Symposium on Auralization,
Espoo, Finland, June 2009.

46 N. Tsingos. Using programmable graphics hardware for
acoustics and audio rendering. In 127th Audio Engineering
Society Convention, New York, USA, October 2009.

47 A. Smirnov and T. Chiueh. Implementation of a FIR filter
on a GPU. Technical report, ECSL, 2005.

48 L. Savioja, V. Välimäki, and J. Smith. Audio signal process-
ing using graphics processing units. submitted to Journal
of the Audio Engineering Society, 2010.

49 F. Trebien and M. Oliveira. Realistic real-time sound re-
synthesis and processing for interactive virtual worlds. The
Visual Computer, (25):469–477, 2009.

50 E. Gallo and N. Tsingos. Efficient 3D audio processing with
the GPU. In Proc. ACM Workshop on General Purpose
Computing on Graphics Processors, August 2004.

51 B. Cowan and B. Kapralos. Spatial sound for video games
and virtual environments utilizing real-time GPU-based
convolution. Future Play ’08: Proc. 2008 Conference on
Future Play: Research, Play, Share, November 2008.

52 B. Cowan and B. Kapralos. Real-time GPU-based convo-
lution: A follow-up. In Proc. ACM FuturePlay@ GDC
Canada, Intl. Conf. on the Future of Game Design and
Technology, 2009.

53 M. Taylor, A. Chandak, Z. Ren, C. Lauterbach, and
D. Manocha. Fast edge-diffraction for sound propagation in
complex virtual environments. In Proc. EAA Auralization
Symposium, Espoo, Finland, June 2009.

54 M. Taylor, A. Chandak, L. Antani, and D. Manocha. RE-
Sound: Interactive sound rendering for dynamic virtual en-
vironments. In Proc. 17th International ACM Conference
on Multimedia, pages 1–10, July 2009.

ISRA 2010 7


	Introduction
	Computation on GPU
	GPU Architectures
	Program execution on GPU
	Programming tools
	Performance considerations

	RAY-BASED MODELING AND GPU
	Ray-based modeling techniques
	Ray-tracing in computer graphics
	Use of GPUs in geometrical acoustics

	WAVE-BASED MODELLING AND GPU
	Finite-difference time-domain simulation
	Adaptive Rectangular Decomposition (ARD)

	AURALIZATION AND GPU
	Convolution
	Fourier transforms

	CONCLUSIONS
	ACKNOWLEDGEMENTS

