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ABSTRACT

The characteristics of early reflections have a major effecton the acoustics of concert halls. In this article a framework
for automatic localization of reflections and their properties is formulated. The framework uses impulse responses
measured with multiple microphones. The focus is on the methods that can be used for detecting reflections and the
methods that estimate the direction of arrival. Three methods for both tasks are given and their performance is measured
using simulated data. Finally an example in a real auditorium is shown using the most reliable methods for detecting
and estimating the direction of arrival of the reflections.

INTRODUCTION

The early reflections and their properties play an importantrole
in the acoustics of an enclosure. The knowledge of the loca-
tion of early reflections is of interest for example in auraliza-
tion and when studying concert hall acoustics. In this article a
framework for localizing reflections from measured impulsere-
sponses is formulated. The presented methods assume that an
impulse response is measured from a source to a microphone
array.

The framework proposed in this article for the localizationof
reflections is three folded. A principle illustration of theframe-
work is presented in Fig.1.

In the first part of the framework the sound source and the mi-
crophones are self-localized or automatically calibrated. That
is, the location of the sound source with respect to the micro-
phone array is solved. This can be done for example by apply-
ing techniques presented in earlier research [1–3]. In addition,
the speed of sound can also be estimated when the distances
between microphones in the array are known.

In the second part, which is the main contribution of this ar-
ticle, the reflections are detected and localized. This is done
using multiple microphones and applying acoustic source lo-
calization techniques. Basically any setup of microphonescan
be used to localize the direction of arrival. Here an open 3-D
spherical six-microphone setup is used. Moreover, any of the
well developed acoustic source localization techniques can be
used, for an overview of them the reader is referred to e.g. [4].
Here three acoustic source localization methods are testedfor
estimating the direction of arrival, of which two are based on
cross correlation and one of them is based on sound intensity
vectors.

In the third part, the reflections are illustrated by mappingthem
in to the geometry of an enclosure or by for example overlaying
them on top of an image as in [5]. In addition, the properties of
the surfaces can be estimated up to some extent by using, e.g.,
simple windowing techniques.

A related topic to the localization of reflections is the localiza-
tion of the reflective surfaces, or the estimation of room ge-
ometry. The problem of estimating the location of reflections
or reflective surfaces using microphones and loudspeakers has
been addressed by several authors with various approaches [6–
14].

Günel as well as Antonacci et al. estimate the room geometry
by spanning a microphone around a loudspeaker [7, 8]. The
basic principle is to measure impulse responses from the loud-
speaker to the microphone with different angles. Then the dis-
tances to the closest surfaces are estimated from the impulse
responses. Reflective surfaces are found since their relative po-
sition changes somewhat periodically with respect to the sound
source and the microphone over the measured responses. De-
velopments of the method presented in [8] are given in [12].

Kuster uses acoustic imaging for finding the room geometry
and other acoustic properties [9, 10]. It is based on the in-
verse extrapolation of the Kirchoff-Helmholtz and Rayleigh in-
tegrals. An acoustic image can be created by measuring multi-
ple impulse responses for example on a line grid with B-format
microphone [9, 10].

Tervo and Korhonen propose an inverse mapping of the mul-
tipath propagation problem, which is then used together with
acoustic source localization to estimate a reflective surface from
speech signal in an auditorium [11]. Moreover, Tervoet al.
use a highly directional loudspeaker and a microphone array
to trace the reflections in time and space using ray-tracing in-
versely [6].

In [13] and [14] a technique called the spatial impulse response
rendering (SIRR) is developed. The analysis part of SIRR in-
spects the direction of arrival of the reflection and the diffuse-
ness of the sound field. SIRR in principle can be used directly
in the framework of this article.

The article is organized as follows. In the second section the
theory is given. The third section describes the methods used
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Figure 1: Diagram of the different tasks in automatic localization of reflections or estimation of the room geometry. This article
addresses the second part of the diagram, that is the estimation related to the localization of reflections, though some examples of the
drawing is also shown.

Figure 2: 3-D microphone array suitable for sound intensity
estimation. Spacingd is equal between two microphones on a
single axis.

for detecting the reflections and for estimating the direction of
arrival. In the fourth section simulations are conducted and re-
sults presented. Fifth section shows a practical example from
an auditorium using some of the methods introduced in the
third section. Sixth section concludes the article with discus-
sion and motivation for future work.

THEORY

A simplified model of the room impulse used in this article is
presented next. In addition, because many methods introduced
later on are based on sound intensity vectors, the estimation of
them is also presented.

Impulse Response Model

In a room environment, the sounds(t) traveling from the sound
source to the receivern is affected by the impulse response
hn(t):

pn(t) = hn(t) ∗ s(t) + w(t), (1)

where∗ denotes convolution andw(t) is measurement noise,
independent and identically distributed for each receiver.

In the context of this article, the impulse response can be sim-
plified as

h(t) =

K
X

k=1

Z

αk(ω)ejω(t−τk)dω (2)

whereαk(ω) is the frequency (ω = 2πf ) dependent attenua-
tion factor for each reflectionk, andτk is the time delay related
to the distance of the path of the reflection. The attenuationfac-
tor is generally known to be dependent on the properties of the
surface and air absorption [15].

Sound Intensity

On a certain axisx, the sound intensity is given in the fre-
quency domain as

Ix(ω) = ℜ{P ∗(ω)Ux(ω)}, (3)

whereP (ω) andUa(ω) are the frequency presentations of the
sound pressure and of the particle velocity with angular fre-
quencyω [13]. In addition,ℜ{·} is the real part of a complex
number and(·)∗ denotes the complex conjugate.

The pressure in the middle of the array, shown in Fig.2, can be
estimated as the average pressure of the microphones [13, 16]:

P (ω) ≈
1

6

6
X

n=1

Pn(ω). (4)

In the frequency domain the particle velocity is estimated for
x-axis as:

Ux(ω) ≈
−j

ωρ0d
[P1(ω) − P2(ω)], (5)

whered is the distance between the two receivers,j is the imag-
inary unit, and for example with the speed of soundc = 343
m/s the median density of the air isρ0 = 1.204 kg/m3.

The sound intensity in (3) is estimated with the approximations
in (4) and (5). For obtaining they and z-component of the
sound intensity, the microphones 1 and 2 are replaced in (5)
with microphones 3 and 4, and 5 and 6, respectively. The over-
all sound intensity vector for a frequencyω is then noted with
I(ω) = [Ix(ω), Iy(ω), Iz(ω)].

Kallingeret al.show that the estimation using (4) and (5) leads
to a biased direction for the sound intensity vectors [16]. This
is due to the fact that the pressure gradient is not constant be-
tween the microphones but rather a sinusoidal one. The bias
can be corrected up to some frequency. However, here the bias
correction is not used since the highest frequency in the exper-
iments is selected to be so low that the bias can be neglected.

DETECTION OF REFLECTIONS

The average energy flow from a diffuse field is zero [15]. In ad-
dition, in an ideal diffuse field the sound intensity vectorsare
uniformly distributed. In contrast, in a plane wave all the inten-
sity vectors point to the same direction. The early reflections
in an impulse response are expected to resemble a plane wave,
and the late reverberation should be nearly diffuse field.

Three methods for detecting the reflections in the impulse re-
sponse in short time windows are presented. Conversely, the
methods give estimates of the diffuseness. First of the meth-
ods is a simple local energy based method, the second and
the third method are based on the distribution and energy of
the sound intensity vectors. The processing is done in discrete
time-frequency blocks although the equations presented here
are in the continuous domains.
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Local Energy Ratio

A simple approach for detecting whether a frame includes a
reflection is to compare its energy to the energy in the previous
and future observations:

DE(t) =
h 1

2Tg

Z t+Tg

t−Tg

|h(τ )|dτ
i.h 1

2Tl

Z t+Tl

t−Tl

|h(τ )|dτ
i

(6)
whereTl andTg are the local and global window lengths, given
here the values 1.3 ms, and 50 ms. Naturally, the procedure
could be done on a certain frequency band as well. Since in
this article there are more than one microphone in use,DE is
averaged over all the microphones.

The minimumDE(t) = Tl/Tg is found by placing for exam-
ple a Dirac pulse at time instant t, and in this casemin{DE(t)} =
0.026. It follows from the nature of the diffuse field, that the
expected value of the maximum ofDE(t) is 1. The same ap-
plies for the other two estimators as well. That is, in a diffuse
field the estimation results vary.

SIRR Diffuseness Estimate

Diffuseness estimate used in Spatial Impulse Response Render-
ing (SIRR) is given by the relation between the sound intensity
vectors length and the total energy [13, 14]:

DSIRR = 1−
‖I(ω)/c‖

E(ω)
= 1−

2Z0‖ℜ{P
∗(ω)U (ω)}‖

|P (ω)|2 + Z2
0‖U (ω)‖2

(7)

where‖ · ‖ denotes the vector norm,| · | is the absolute value
of a complex number andZ0 = ρ0c is the acoustic impedance
of the medium. SIRR diffuseness estimate gets values between
0 and 1.

Spherical Variance

In [6] the 2-dimensional spherical variance is used for detect-
ing the reflections. Here 3-dimensional case is shown. The spher-
ical variance is calculated as [17]

V = 1 − ‖S‖/W, (8)

where

S =

w2
X

w1

I(w) (9)

is the sum of all the individual vectors over the selected dis-
cretized frequency band fromw1 to w2, andW = w2 − w1.
In the preliminary experiments it was noticed that the normal-
ized intensity vectorsI(w)/‖I(w)‖ give more robust results
than the unnormalized ones, therefore the spherical variance is
calculated from the normalized ones.

As an example, consider a 2-dimensional case in polar coor-
dinate system, and the angle componentθ of it. The spheri-
cal variance of a set of angle components is close to zero if
they are “tightly clustered” [17]. Note that, althoughV = 1
for an ideally diffuse field, it is also 1 for angles of the form
[θ1, θ2 · · · , θK , θ1 + π, θ2 + π · · · , θN + π] [17]. Therefore,
in theoryV can not be used directly to estimate the diffuseness
of the sound field. However, in practice, situations where the
angles occur periodically are very rare.

LOCALIZATION OF REFLECTIONS

The estimation of the distance of a detected reflection is formu-
lated. In addition, three methods for estimating the direction
of arrival of the reflections are presented. One of the methods
uses sound intensity vectors and two are so-called steered re-
sponse power methods. Examples of the methods are given in
Fig. 3, in 2-dimensions for simplicity.

Distance Estimation

The distance that the sound wave has travelled is calculated
directly using the time delay of the detected reflection and the
speed of sound

d = cτk, (10)

whereτk is the time delay related to a reflectionk. When sev-
eral microphones are in use and if the far-field assumption is
used then (10) gives the distance to the center point of the array.
Using near-field assumption the distance has to be calculated
separately for each microphone. This can be done by applying
(10) to the so-called time delay difference framework which is
used in the cross correlation based methods, and is formulated
later on in this section.

The speed of sound can be estimated to some extent if the di-
rection of arrival and the intra-sensor distances are known. The
speed of sound is solved with these parameters using basic
geometry. For example so-called slowness vector estimation
could be perhaps applied inversely for this problem since full
dimensional version of it does not require any information on
the speed of sound [18, Ch. 7].

Mean Direction of the Intensity Vectors

The direction of the arriving sound wave can be estimated as
the spherical mean (SME) of the sound intensity vectors over
a frequency band [17]

Î =
S

‖S‖
. (11)

Conversion from Cartesian to spherical coordinates can be done
using basic trigonometric equations. Here, the length of each
sound intensity vector is first normalized to 1 before the con-
version. This is done based on the results in [19], where the
normalized vectors are found to provide more noise robust re-
sults than the unnormalized ones.

In [19] four other possibilities for estimating the direction of
arrival from the sound intensity vectors are presented and dis-
cussed. Although the methods in [19] are given in 2-dimensions
they can be extended to 3 dimensional data. Example of the
spherical mean is given in Fig.3(a).

Cross Correlation based methods

A popular family of acoustic source localization functionsis
the steered response power methods, though throughout this
article the namecross correlation based methodsis used. In
these methods, the acoustic source localization likelihood is
evaluated as a spatial combination of cross correlation func-
tionsRxi,xj

for each location candidatex [20]:

P(x) =

M
X

{i,j}=1

Rxi,xj
(τ (ri, rj;x)), (12)

where{i, j} denotes a microphone pair,τ (ri, rj;x) is the time
delay term, andM is the number of microphone pairs. The
maximum argument of (12) is the location estimate:

x̂ = arg max
x

{P (x)}. (13)

In traditional acoustic source localization, the time delay dif-
ference is calculated as the difference of the distance between
the location candidate and the locations of the microphones:

τ (ri, rj;x) = c−1(‖ri − x‖ − ‖rj − x‖), (14)

wherec is again the speed of sound. Again, conversion from
Cartesian to spherical coordinate system is done to obtain the
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direction of arrival. An important difference between the spher-
ical mean and the cross correlation methods is that (14) enables
the distance from the source to the receiver to be taken in to ac-
count, whereas SME uses the farfield assumption.

Thegeneralized cross correlationfunction between two received
signalsxi andxj is given as [20]:

Rxixj
(τ ) = F−1{W(f)Cxixj

(f)}, (15)

whereW(f), Cxixj
(f), andF−1, are the weighting function,

cross power spectral density between signalsxi andxj, and in-
verse Fourier transform, respectively. Two different weighting
functions are selected, the direct cross correlation (CC)

WCC(f) = 1 (16)

and the phase transform (PHAT)

WPHAT(f) = 1/|Cxixj
(f)|. (17)

Other options for weighting are discussed for example in [4].

In practice, the accuracy of the acoustic source localization is
limited by the sampling frequency. To achieve higher accuracy,
interpolation can be applied. Interpolation can be done either
to the original signals, the cross correlation, or the localiza-
tion function. Here the cross correlation function is interpo-
lated with exponential fitting, which is presented in [21] for
several maxima and for a single maximum in [22]. In expo-
nential fitting,Np highest maxima are selected, and they are
assumed to have an exponential shape

f(τ |κ[m]) = κ2,m exp(κ3,m(τ − κ1,m)). (18)

The parametersκ[m] = κ1..3,m, associated with a certain
maximumm, are solved with respect to the maximum and the
two discrete neighboring points. As a result, the cross correla-
tion function is parameterized withNp × 3 coefficients. Here 5
highest maxima of the cross correlation function were selected,
that isNp = 5. First coefficient,κ1,m, describes the time delay
associated with each maximum. The second one,κ2,m, is the
height of the maximum, and the third one,κ3,m, is the width.
The time delay estimation function is then given by

Rxi,xj
(τ ) = max

m
{f(τ |κ[m])}, (19)

i.e. the parameterized exponential giving the maximum value
for τ .

Examples of steered response function with the interpolation
and different weighting for the cross correlation functionis
given in Fig.3(b)-(c).

EXPERIMENTS

Simulations are conducted to study the performance of the de-
tection of reflection and the direction of arrival estimation. In
addition, as an example one of the reflection detection and di-
rection estimation methods are demonstrated with real impulse
responses from an auditorium.

Monte Carlo Simulations

The simulations are conducted in 3 dimensions using 6 micro-
phones in a square grid withd = 2.5 cm. A reflection is gener-
ated at a distance of 15 m, from the central point of the array,
and the azimuth direction of arrival of the reflection is changed
from 0 to 360 degrees between every 1 degree. The direction
estimation is limited to azimuth angle. That is only the 4 micro-
phones on the x-y plane are used. The results of the comparison
can also be generalized to elevation angle. The distance is as-
sumed to be known a priori before the direction estimation. A
sinc-function is used as the signal for the reflection.

P
D

F(
θ
)

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
(a) Histogram of the intensity vectors

P
(θ

)

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180
(b) SRP with Cross Correlation weighting

P
(θ

)
θ Direction [Degrees]

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

(c) SRP with Phase Transform weighting

Figure 3: Examples of the direction estimation methods. The
sound source is located at 60°and 15 m, and reflection-to-
diffuse sound ratio is 0 dB. Estimated directions of arrivalare
-59.1°, -60.0°, and -61.0°, for SME, CC, and PHAT, respec-
tively, and they are shown with horizontal dashed lines. The
cross correlation based methods are discretized to the accuracy
of 0.5 degrees.

Diffuse sound is added to the simulated pressure signals by
adding uncorrelated white noise to each microphone. Adding
white noise to the signals corresponds to a perfect diffuse sound
field. The standard deviationσd of the white noise which is
simulating the diffuse sound field is altered to study the perfor-
mance. This quantity is noted here with Reflection-to-Diffuse
sound Ratio (RDR), and it is the ratio between the energy of
the reflection and of the diffuse sound field. Each condition is
simulated 50 times, leading to 18000 Monte-Carlo samples for
each RDR condition.

The direction was estimated using the discretized versions
of the equations presented in the previous section. For the
sound intensity based direction estimation methods, the fre-
quency band was limited from 100 Hz to 3 kHz, due to rea-
sons discussed earlier. The performance of the direction esti-
mation methods is measured with spherical variance and abso-
lute value of the spherical mean, noted hear withVe and|Me|,
respectively.

The results from the simulations are shown in Figs.4 and5.
The results with the different diffusion estimation methods pro-
pose that all of the methods are capable of detecting diffuseand
non-diffuse sound field. In addition, all have an asymptoticbe-
havior. Spherical variance gives the most consistent results of
all the three methods, since it varies between 0 and 1, and gives
the value 0.5 when the RDR is 0 dB. SIRR diffuseness estimate
is biased in the upper part since it gives values only up to 0.8.
Local energy ratio does not decrease as steeply as the other
estimates around 0 dB. The percentiles shown in Fig.4 illus-
trate the earlier discussed behaviour of the diffuse field. That
is, the uncertainty of the estimation increases as the diffuseness
increases due to the random nature of the diffuse field.
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(c) Local energy ratio

Figure 4: Performance of the diffuseness estimation methods
against RDR. Percentiles50 and 50 ± 47.6 are shown. The
uncertainty of the estimation increases as the diffusenessin-
creases due to the random nature of the diffuse field.

The comparison between the direction estimation methods in
Fig. 5a shows that CC suffers from the least variance in the
estimation. With CC the bias is less than 5 degrees when RDR
is more than -13 dB. For PHAT the corresponding figure is
-11 dB and for SME it is -6 dB. SME has the highest vari-
ance. At least one of the reasons why the sound intensity vec-
tor based method perform worse is that it uses a limited fre-
quency band whereas the cross correlation based methods use
the whole frequency band. In the future work, the performance
of the cross correlation methods in different frequency bands
should be considered. In addition, in the cross correlationbased
methods the search of the direction maximum is done in a grid
of 0.5 degrees. This lowers the variance when the conditions
are good, since the estimated direction of arrival is quantized.

In this simulation, the source was in the far field (15 m) and the
distance between the microphones was small (2.5 cm). If the
source is in near field the estimation with SME becomes biased,
since it uses the far field assumption by default. CC or PHAT
will not suffer from this since the distance to the source canbe
taken into account in the time delay difference based sourcelo-
calization. Here the distance was assumed to be known a priori,
therefore correct time delay differences could be used for CC
and PHAT.
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(a) Absolute spherical mean of the error
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(b) Spherical variance of the error

Figure 5: Performance of the direction estimation methods
against RDR. Direct cross correlation (CC) has the lowest vari-
ance.

Figure 6: Setup in the auditorium and the overall floorplan.

Example in an Auditorium

An example of reflection localization with a room impulse re-
sponses measured in an auditorium is shown. The measure-
ment setup and floorplan of the auditorium are depicted in Fig.
6. The audience area has an inclination of about 10 degrees,
as the height of the auditorium decreases from about 8 m to 5
m, leading to volume 1800 m3. One source position and two
receiver positions were used in the experiments. Three dimen-
sional microphone grid (see Fig.2) with d = 1 cm and a loud-
speaker which has an omnidirectional directivity pattern up to
8 kHz were used. The sampling frequency was set to 48 kHz,
and the speed of sound was estimated to bec = 342.1 m/s.
Here the estimation of the speed of sound is based on the gen-
erally known relationship with the temperature.

Impulse responses were measured from 40 Hz to 24 kHz using
the sine-sweep technique [23]. The impulse responses are ana-
lyzed using a rectangular window of length 128 samples with
99 % overlap with sampling frequency of 48 kHz.

The localized reflections and the impulse response from mi-
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Figure 7: Impulse response, spherical variance, and the direction of arrival of the reflections. Direction of arrival ofthe 6 manually
selected reflections overlayed on top of a panorama image of the auditorium seen from the receiver location. The dark bluedot is the
direct sound. Other colored dots represent the reflections.

crophone number 1 are shown in Fig.7. The most consistent
diffuseness estimate in the simulations, the spherical variance
is used for detecting the reflections. If the spherical variance is
below 0.15 the current frame is detected as a reflection. This
threshold value is arbitrarily selected. The direction estima-
tion is done with SRP using direct cross correlation weighting.
Since the time of arrival is always known, the distance for the
time differences in the SRP function in (14) can be used cor-
rectly at each time instant using (10).

The 99 % overlap and the selected threshold for spherical vari-
ance leads to a situation where a single reflection is detected
more than once as can be seen in Fig.7(c). An option to get
rid off this problem is to group the estimates using e.g, Gaus-
sian Mixture Model, according to their location and diffuse-
ness value. Here a manual selection of the reflection was used
to group them.

In Fig. 7(e) direct sound and 5 selected reflections are over-
layed on a panorama image of the auditorium. It follows the
idea of visualization of impulse responses shown in [5]. Direct
soundis on arriving from the right hand side of the table, the
source position is also illustrated in Fig.6. The first reflection
to arrive at the receiver is a ceiling reflection.Second reflection
is a wall reflection from the right side wall.Third reflection, is
a second order reflection via floor and the back wall, andfourth
reflectionis via floor and side wall.Fifth reflectionis a second
order reflection also via floor and back wall, andsixth reflec-
tion is via ceiling and back wall. Somewhat surprising is that
none of the selected reflections are directly via back wall. It
seems that the curvy shape of the wall does not produce any

first order reflections for this specific source-receiver combina-
tion.

CONCLUSIONS

A framework for localizing reflections was proposed. The frame-
work consists of three main parts of which one was studied
here, the localization of reflections. This category can be fur-
ther divided into two subcategories, detection of reflections and
direction of arrival estimation.

The simulation results showed that a cross correlation based
direction of arrival estimation methods outperform the sound
intensity vector based methods. The framework was demon-
strated also in a real auditorium using the methods that per-
formed the best in the simulations.

Future work includes the estimation of the absorption coeffi-
cient, the reflective surfaces, the automatic calibration of source
and microphone positions, and the estimation of speed of sound
from measured impulse responses.
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