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ABSTRACT 

This paper presents the results of investigations into real-valued alternatives to binary or n-ary based amplitude re-
flection gratings for sound diffusion. The limitation of these gratings is discussed together with proposed methods of 
improving performance. 

INTRODUCTION 

Cost-effective means of achieving sound diffusion are a high 
priority in modern room acoustic design. Uniformity of lis-
tener experience and the reduction of colouration, and other 
acoustic defects, are goals that are assisted by the inclusion of 
sound diffusing treatments within critical listening spaces. 
Recent experiences with this form of diffusion treatment, 
such as the design shown in Figure 1, have been highly suc-
cessful motivating further studies.  

 

 
Figure 1. Lecture Theatre Design using Amplitude Reflec-

tion Gratings and a Measured Impulse Response Envelope of 
the Theatre 

This paper describes the methods and results of investigations 
into amplitude reflection arrays expanded to allow real values 
for the array elements. 

OUTLINE 

An amplitude reflection grating comprises a surface pattern, 
or array, of reflective and absorptive zones. The pattern may 
be repeating or be considered as a finite single pattern.  

If the pattern is to be repeated this allows a linear pattern, or 
sequence, to be converted to a planar (2D) array via the Chi-
nese Remainder Theorem [1], provided it has coprime factors 
of its length. For example, a sequence with 15 elements may 
be converted into a 3 x 5 array. Essentially this converts the 
linear sequence into a diagonal 1D array, however, this con-
struction is not valid unless the array is repeated. 

We are interested in the mathematical and physical behaviour 
of one and two dimensional arrays with the array values rep-
resenting the sound reflection strength at their position within 
the array.  The array will not have any negative values unless 
depth offsets relative to the main surface position are incor-
porated into the design. A negative value will occur at regular 
but intermittent frequencies where the offset will cause a 
delay derived 180 phase shift of the reflection relative to the 
phase at the main surface. 

Because of the increased manufacturing complexity in im-
plementing offsets into a surface reflection array this option 
will not be considered further in this discussion. Conse-
quently, arrays with positive elements only, which will be 
described in the following as optical arrays or optical se-
quences [2], will be investigated. In addition to this we will 
normalize the reflection strength of an element to be in the 
range between 0, representing no reflection and 1, represent-
ing totally reflective.   

The Wiener-Khinchin theorem states that the power spectrum 
of a sequence, or an array, is equal to the Fourier Transform 
of its autocorrelation function [3]. We are interested in pat-
terns that result in a flat, or at least smooth, power spectrum 
which indicates that the reflected sound energy will be spread 
out in an even way. 

In the case of optical arrays, it is not highly significant 
whether we use the Fourier Transform of the periodic or the 
aperiodic autocorrelation since the autocorrelation sidelobes 
of either are positive, with no opportunities for cancellation 
(the periodic autocorrelation function can be thought of as 
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being derived from the addition of adjoining aperiodic auto-
correlation functions). That is, reducing the sidelobe strength 
in the aperiodic autocorrelation will imply a reduction in the 
sidelobe strength in the periodic autocorrelation for a given 
sequence.  

In the following one dimensional example [4] we have a 
linear optical binary sequence of length 7 depicted in the 
upper portion of the figure, a), namely 1,1,0,0,1,0,1 with the 
autocorrelation function of this sequence in the lower portion, 
b), derived from the number of similarities of a shifted ver-
sion of the sequence with itself. The autocorrelation is sym-
metrical about the zero shift position. 

 
Source:[4]  

Figure 2. An Optical Binary Sequence and its Aperiodic 
Autocorrelation 

More formally and allowing a planar array, the aperiodic 
autocorrelation function of an M x N array pattern a(m,n) is 
given by: 

ACF(k,l) = ∑m ∑n a(m,n)a(m+k,n+l) 

,where a(m,n) = 0 for m, n< 0 or m>M , n>N 

Patterns, their periodic and aperiodic autocorrelation, and 
FFTs of these to determine the array power spectrum re-
sponse were determined in a Microsoft Excel 2003 spread-
sheet using functions available in the Xnumbers Numerical 
Methods addin [5].   

A genetic algorithm addin was used to optimize element 
values to a selected cost function. Generally a cost function 
directly related to maximizing the flatness and smoothness of 
the spectrum was found to provide better results than cost 
functions related to minimising autocorrelation sidelobes. 

As an example, a 2 x 4 array with values as indicated in the 
Figure 3a below has an aperiodic autocorrelation function 
given in Figure 3b. The FFT of this, the power spectrum, is 
given in Figure 3c, which is not flat but is quite smooth. The 
specular response is that at the centre of the last graph. 
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Figure 3. An Optical Real Array a), and its Aperiodic Auto-
correlation b) and Power Spectrum c). 

SIMULATION 

The Huygens-Fresnel Principle  

In the 17th Centaury Dutch physicist Christiaan Huygens 
proposed that every point on a propagating wavefront can be 
thought of as the source of secondary spherical wavelets. The 
envelope of these wavelets then approximates the wavefront 
some time later. Augustin Jean Fresnel modified this idea to 
include interference effects. The Huygens-Fresnel Principle 
states that [6]:  

Every unobstructed point of a wavefront, at a given instant, 
serves as a source of spherical secondary wavelets (with the 
same frequency as that of the primary wave). The amplitude 
of the optical field at any point beyond is the superposition of 
all these wavelets (considering their amplitudes and relative 
phases). 

 
Source: Wikipedia  

Figure 4. Huygens- Fresnel Principle 

This approximation has been found to be adequate in many 
situations involving wave phenomena as it predicts in accor-
dance with observations, particularly for large source and 
receiver distances and when the reflecting elements or aper-
tures have dimensions that are large in comparison to the 
wavelength. 

In 1882, Gustav Kirchhoff developed a mathematical theory 
of diffraction based on the solution of the differential wave 
equation. His analysis led to a more rigorous formulation of 
Huygens's Principle as a direct consequence of the wave 
equation. In this more refined version the secondary wavelets 
have cardioid directivity [0.5(1+cosφ)] normal to the wave-
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front, so there is no backward travelling component, and they 
radiate 90 degrees out of phase with the primary wavefront. 

Babinet’s Principle  

Babinet’s principle states that the reflection from a plane 
rigid surface is equivalent to the transmission through an 
opening, of the same geometrical shape, surrounded by an 
infinite rigid baffle [7]. Using these concepts, the problem of 
modelling a plane wave impacting a planar array of reflecting 
elements can be thought of as approximately equivalent to an 
incident plane wave propagating through an array of aper-
tures in an infinite baffle.  

A plane wave is sufficient to consider because an arbitrary 
sound field can be decomposed into plane waves. 

  
Source: [6] 

Figure 5. Babinet’s Principle 

The apertures/reflecting elements are modelled, as in the 
Figure 4, with omnidirectional sound sources acting as the 
source of secondary wavelets. We are only interested in the 
soundfield in the observable space on the exit side of the 
apertures and so as a first approximation we do not need to 
use cardioid secondary sources unless we want better infor-
mation at more extreme off-axis receiver locations or if we 
also want to investigate the effect of small gradient curvature 
or modulation of the reflecting surface of the array. The 
Kirchhoff wavelet phase shift relative to the primary wave-
front is not necessary to include in the modelling, since only 
the relative phases between points in the pressure field are of 
interest. 

Spatial Aliasing 

Frequency domain aliasing results from insufficient sampling 
of a signal in time. Spatial aliasing is the spatial domain 
equivalent, more commonly discussed in relation to loud-
speaker arrays and wave field synthesis. 

The far field power spectrum response of the array, the Fou-
rier Transform of the autocorrelation of the array pattern, is a 
function of kdg [sin(θr) + sin(ψipw)], where dg is the array grid 
spacing, k is the wave number (2πf/c), c is the speed of 
sound, ψipw is the angle of sound incidence (plane wave) and 
θr is the angle of reflection to a receiver location with respect 
to the normal to the surface of the diffuser. 

For kdg[sin(θr) + sin(ψipw)] = π , the full power spectrum re-
sponse is mapped into the observable space in front of the 
array. At values less than this only the initial portions of the 
response are mapped to the observable range. When this 
value is exceeded, more than one period of the response is 
mapped into the observable space and aliasing occurs.  

The frequency above which aliasing commences, falias, is 
dependent on the array grid spacing and the angles of the 
incident sound and receiver with respect to the array: 

falias = c / 2dg|sin(θr) + sin(ψipw)| 

That is, aliasing occurs when the effective spacing of reflec-
tive elements is greater than half a wavelength.  
 

In the example following, Figure 5, the smoothed power 
spectrum at a receiver for a 0° incident plane wave and re-
ceiver at 10°, aliasing begins at 3,300 Hz. Repeats of the 
power spectrum can be seen in the response as indicated be-
tween the triangular points and at frequencies above these. 

ERB Smoothed Frequency Response for Array: Listening Angle 
10°; Plane Wave Angle of Incidence 0°; Element Separation 

300mm

50dB

60dB

70dB

80dB

90dB

100 1000 10000 100000

Frequency, Hertz

Arbitrary Level

 
Figure 6. Aliasing Effects on Spectrum 

A few points should be noted: 
 Aliasing is independent of source and receiver dis-

tances.  

 The optical array response is constant with frequency 
for a receiver in the specular direction. This is because 
the alias frequency becomes infinite (θr = -ψipw , so 
sin(θr) + sin(ψpw) = 0 ) and only the start point of the 
power response, the constant dc component, is mapped 
to the observer. As the observer moves away from the 
specular direction, more of the power response is 
mapped to observable space and aliasing may start to 
occur. 

 For optical arrays the specular response has maximum 
amplitude. The maximum amplitude increases directly 
in proportion to the number of array elements. 

 The location at which aliasing will start first is at right 
angles to the array for source and receiver on the same 
side. 

Soundfield Modelling 

Acoustical prediction software developed by Meyer Sound 
Laboratories, Mapp (Multi-Purpose Acoustical Prediction 
Program) Online Pro [8] was used to approximate the behav-
iour of candidate arrays determined from the pattern optimi-
zations. The arrays were modelled using an omnidirectional 
source for each element of the array. Each element was able 
to be adjusted for weight between an attenuation of 0dB and 
muted to represent a totally absorptive element.  

Figure 6, below, shows an array soundfield and spectrum at 
right angle to on-axis generated by Mapp showing aliasing 
effects both spatially and in the spectrum response.  

Figure 7. Array Soundfield and Off Axis Spectrum 
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The soundfield results from Mapp represent an idealised 
approximation to the array behaviour that does not take into 
account some of the physical aspects of element and array 
behaviour. These aspects, discussed further in [7] and [9], are 
the subject of ongoing work and refinement of models.  

The main effect is high pass filtering of the array spectrum 
response that is a function of the source and receiver dis-
tances from the array, ds and dr, the size of the array and array 
elements, and the angles to the array.  For design purposes 
this behaviour may be included in the modelling to some 
degree by incorporating lowpass functions and attenuations. 

 The array design considerations are summarised in the fol-
lowing figure. 

 

Figure 8. Outline of Amplitude Reflector Array Design 

RESULTS 

A large range of array sizes have been investigated. The re-
sults can be summarised as follows: 

 Allowing intermediate values between 0 and 1 for array 
element weights expands the range of array possibilities 
and generally gave improvements in performance over 
optical binary behaviours. 

 There are no simple means of determining array ele-
ment weights other than by genetic algorithm or other 
optimization methods suitable for combinatorial prob-
lems. This approach is quite time consuming but does 
allow an optimized result within other constraint set-
tings that may be desired. 

 There are a range of cost functions that can be opti-
mized however best results were obtained by costing 
the spectrum response aspects directly rather than cost 
functions of the autocorrelation sidelobes. Minimizing 
the variation and variability of the spectrum response 
was found to be a simple but effective approach. 

 As the number of elements in the array increases it is 
increasingly difficult to obtain an even, or at least 
smoothly varying, spectrum response. Arrays based on 
a smaller number of elements have more scope to pro-
vide smoother spectrum responses. 

 Best responses required sparse arrays which meant that 
the array was weakly reflecting. 

 Best responses require low weight elements which con-
flicts with manufacturing feasibility. 

IMPROVING DIFFUSER PERFORMANCE 

Complementary Array Angles 

Using two or more arrays with different tilt angles relative to 
the source and receiver positions can provide significant im-
provement in the resultant spectrum response at a receiver. 
The improvement can be greater than can be achieved by 
optimizing the array pattern. In the following example, the 
spectrum variation is reduced in the order of 10 dB (black 
line) by using two linear diffusers (green and blue lines) at 
complementary tilt angles. 

ERB Smoothed Frequency Response for Array: Listening Angle 
15.3°; Plane Wave Angle of Incidence 0°; Element Separation 
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Figure 9. Outline of Amplitude Reflector Array Design 

For the cases studied, it has been found that the improvement 
at the optimized angle is not markedly better than at other 
angles and some useful degree of improvement is generally 
achieved as long as there is a difference in angles, some-
where between 2° and 20°.  

Aperture Shading 

Considering the reflective elements of the array as apertures 
there is scope to reduce diffractive effects using amplitude 
shading. This diffraction is essentially lobing generated off 
the edges of each element and results in the degradation of 
diffusion. Amplitude shading is the tapering of the strength of 
the sound reflection between the centre and the edges of the 
reflective element.  

Recent work on optical techniques for searching for extra-
solar planets [10] has concentrated on occluders to block the 
light from a star but allow its surrounding planets to be dis-
cerned. To do this the occluder is tapered to minimise diffrac-
tion. The tapering was achieved by using petals around the 
perimeter of the occluder to transition the amplitude strength, 
as in the figure below.  

  
Source: [10] 

Figure 10. Aperture Shading by Tapered Form 
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This principle has been used in recent diffuser designs, as in 
the indicative example below for use in a periodic arrange-
ment (light zones are reflective, dark zones are absorptive). 

 
 

Figure 11. 4 x 4 Optical Real-Valued Amplitude Diffuser 
with Aperture Shading 

 

CONCLUSION 

Investigation of real-valued optical arrays has found that 
good performance is generally at the cost of sparseness, 
meaning the array is weakly reflecting. Optical arrays with 
less than ideal performance can be used in combination to 
achieve significantly improved performance by adjustment of 
relative tilts to the incident sound field. Aperture shading of 
array elements is also proposed as a means of improving 
diffusion performance. 
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