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Abstract 
Non-linear flutter and limit cycle oscillations (LCOs) control of a non-linear wing are 
considered here. For this purpose, at first, a new formulation of static output feedback control 
is developed, and then an optimal solution for determining gains is presented. The optimal 
solution obtained from solving combined Lyapunov and Riccati equation. The designed 
controller applied for suppression of LCOs of low aspect ratio rectangular wings in low 
subsonic flow. This non-linear wing model has double bending in both chord-wise and span-
wise directions (Von Karman plate theory). For aerodynamic modelling, a vortex lattice 
method is used. Results show, with this simple controller, we can effectively suppress limit 
cycle oscillation and extend flutter boundary. 

1. INTRODUCTION 

Many studies show that, aeroelastic systems are inherently nonlinear and behaviours such as 
jump phenomena, limit cycles, modal interactions, and various types of resonances occur in 
aeroelastic systems. Ref. [1] presents an excellent review of nonlinear aeroelasticity and 
related topics. 

Many strategies applied to nonlinear flutter control of wings and airfoils, [2-3]. Here 
static output feedback (SOF) control method applied to flutter and limit cycle oscillation 
control of a nonlinear aero-elastic cantilevered wing in low subsonic flow. The structural 
model is a nonlinear plate model based on Von-Karman plate theory which can model both 
in-plane and transverse displacements. The structural nonlinearity is due to double bending in 
both chord-wise and span-wise directions. For aerodynamic modeling, a three dimensional 
vortex lattice aerodynamic model is used [4]. At first, we present a new solution method to 
solve this conceptually simple, but mathematically difficult control method and then applied it 
to a complex aeroelastic system. 

2. STATIC OUTPUT FEEDBACK CONTROL 

The static output feedback (SOF) problem is one of the most important open questions in 
linear control engineering. This control method applied by Patil and Hodges [5] to control of 
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nonlinear aeroelastic response of slender wing. Here, at first we present new static output 
feedback formulation, and then give an optimal solution based on this formulation. 

Consider a linear time invariant system in the form of: 
Bu(t)Ax(t)(t)x +=&  (1) 

Cx(t)y(t) =  (2) 
with control input as: 

Ky(t)u(t) −=  (3) 
We take 1×ℜ∈ mx(t) , control input 1×ℜ∈ nu(t)  and the output 1)( ×ℜ∈ pky . At first we 

divide states of system into two categories, measurable and unmeasurable, i.e. 
{ }Txxx 21=  (4) 

Here, we assume that 1
1

×ℜ∈ px  are measurable, and 1)(
2

×−ℜ∈ pmx  are not measurable. 
Eq. (1) in terms of these variables can be written as: 

u(t)B(t)xA(t)xA(t)x
u(t)B(t)xA(t)xA(t)x

22221212

12121111

++=
++=

&

&
 (5) 

where ijA  and iB  are subsystems of A  and B  matrices, respectively. The output equation 
in terms of this variables can be written as, 
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In which, ppRC ×∈1 and invertible. In addition, Eq. (3) can be written as: 
(t)xKCu(t) 11−=  (7) 

With changing variables and combining Eq (7) with Eq. (5), dynamics of system can be 
written in compact form of 

Hu(t)Gz(t)(t)z +=&  (8) 
where, 
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And 
z(k)Ku(k) ′−=  (10) 

2.1 POLE PLACEMENT TECHNIQUE FOR DETERMINING GAIN K  

As usual in modern control method, one method for determining K  is via pole placement 
technique. For this purpose, we introduce transformation mmRT ×∈ , which transform original 
system into canonical controllable form. If we apply this transformation to Eq. (8), the gains 
K can be determined from below equation (required manipulations are deleted): 

][ 1122111 aαaαaαaαKT mmmm −−−−= −− L  (11) 

Where mp
1

×∈RT is part of transformation matrix [ ]TT 21 TT= . ia  and iα  are 
coefficients of open loop and closed loop characteristic equations, respectively.Since, 1T  is 
not a square matrix, we cannot solve Equation (11). If we chance to find inverse of non-
square matrix of 1T , then we can assign poles of closed loop system in every desired location, 
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but this is not always possible, and we only must hope to find approximate solution for above 
equation. We can rewrite Eq. (11) 

[ ] [ ]11111211 aαaαaαaαTTK m-p-m-p-m-pm-pmm −−−−= LL  (12) 

where [ ]12111 TT=T  and ppR ×∈11T , )(
12T pmpR −×∈ . Equating different elements of 

Eq.(12) we have 
[ ] [ ]11111211 , aαaαKTaαaαKT m-p-m-p-m-pm-pmm −−=−−= LL  (13) 

From first equation of (13), we have 
[ ] 1

11
-

m-pm-pmm TaαaαK −−= L  (14) 
with substituting Equation (14) into second Equation (13), we have, 

[ ] [ ] 12
1

111111 TTaαaαaαaα -
m-pm-pmmm-p-m-p- −−=−− LL  (15) 

From Eq. (15), we conclude that, when full states measurement is not possible, we are 
not free in specifying all coefficient of closed loop characteristic equation and we can only 
change p  coefficients. Since determining gain K  from above procedure is not possible, we 
present optimal solution for this problem. 

2.2 OPTIMAL STATIC OUTPUT FEEDBACK SOLUTION 

Considering a cost function in the form of: 

[ ]∫
∞

+=
ot

TT dtRuuQzzJ  (16) 

Minimizing this cost function, results: 

( )zKRKQzzMzMzz TTTT ′′+−=+ &&  (17) 
With replacing Eqs. (8) and (10) in (17), we have 

[ ] [ ] KRKQKHGMMKHG TT ′′−−=′−+′−  (18) 
At first dynamics of system partitioned as: 
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where ppR ×∈11G , p)(mpRG −×∈12 , ppmR ×−∈ )(
21G , ppR ×∈22G , npR ×∈1H ,

npmR ×−∈ )(
2H . With simplifying Eq. (18), we have, 

( ) ( ) ( ) ( )
011

22112111112122111111

=++

−+−+−+−

RKKQ

KHGMKHGMMHKGMHKG
T

TTTTTT
 (20) 

( ) ( ) 021221221112121221112 =+−+−++ QKHGMKHGMMGMG TT  (21) 

0222222122122221212 =++++ QGMGMMGMG TT  (22) 

Matrix K  that minimizes J  can be obtained by minimizing Eq. (20) with respect to K . 

With rewriting Eq. (20) as below, 
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( )( )
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Since, the last term is nonnegative, the minimum occurs when it is zero, or when, 

( )21
T
211

T
1

-1 MHMHRK +=  (24) 
Hence, Equations (20-22) are converted to, 
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(26) 

0222222222212211212 =++++ QGMMGGMMG TT  (27) 

With solving Eqs. (25-27), matrix M  can be obtained. We prepared a code for solving 

Eqs. (25-27), in which we transform these equations into algebraic nonlinear equations and 

then solve it. This code is applicable to case where all states are measurable. If it is requested, 

we can attach them to this paper. 

3. AEROELASTIC MODELING 

A schematic diagram of the wing-plate geometry with a three-dimensional vortex lattice 
model of the unsteady flow and piezoelectric patches showed in Fig. 1. The rectangular wing 
has span L , chord c , and thickness h . The aero-servo-elastic state space equations are derived 
based on assumed mode method and using Lagrange's equations based on the Von-Karman 
plate equations [15] using the total kinetic and elastic energies and the work done by applied 
aerodynamic and piezoelectric actuator forces on the plate. The modal functions used are 
axial and transverse natural modes of free-free and cantilevered rods and beams, respectively. 

3.1 STRUCTURAL MODELING 

The non-dimensional displacements equations are as follows [6]. 
ij

gf
g f

ij
gfkp

k p

ij
kp CbCaC =+∑∑∑∑ ,         rs

gf
g f

rs
gfkp

k p

rs
kp DbDaD =+∑∑∑∑  (28-29) 

[ ] ij
piezo

ij
aero

ij

m n
mn

ij
mnmn

ij
mn QQFqBqA =+++∑∑ &&  (30) 

where ij
kpC  and rs

gfD  are stretch stiffness matrices of wing in span-wise and chord-wise 

directions, and ij
gfC  and rs

kpD  are coupling stretch stiffness between displacements in span-wise 

and chord-wise directions and vise versa, respectively. Also ijC  and rsD are non-linear forces 
which are quadratic polynomials of the plate transverse deflection [6]. kpa  and gfb  are 

generalized coordinates for span-wise and cord-wise displacements. And ij
mnA , ij

mnB  and ij
NF  

are mass, stiffness and nonlinear bending matrices. ij
NF  is a polynomial of order two and three 
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in terms transvers generalized coordinates mnq . 

 
 Fig. 1 Aero-servoelasrtic model of a 

cantilevered plate. 
ij
aeroQ is the non-dimensional 

generalized force due to aerodynamic work 
[6]. ij

aeroQ  is given by: 
 

∫ ∫ ∆=
1
0

1
0

42

6
ηξϕφρ ddp

Dh
cUQ ji

ij
aero          (31) 

where iφ and jϕ  are assumed 
functions, which satisfy boundary 
conditions for transverse displacement. ρ  
and U are density and velocity of free 
stream, and D  is bending stiffness of wing. 

We assumed two similar 
piezoelectric patches with different sign 
applied voltages placed on the wing 
according to Fig. 1. 

 Hence, the net work down by 
piezoelectric actuators is from bending 
moment, and the stretching work will be 
diminished. The work down by 
piezoelectric patches will be given as [7]: 

dydxE
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where in Eq. (32), pE , ph , 31d , pν , and 3E  are, module of elasticity, thickness, 
dielectric constant, Poisson ratio, and applied electrical field of piezoelectric patches 
respectively. With assuming constant electric filed in poling direction of piezoelectric, the 
electric applied field 3E  relates to applied voltage V as phVE /3 = . Hence generalized force 
due to piezoelectric actuator gives by: 
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ν ξ
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where in Eq. (33), E , h , and ν  are, module of elasticity, thickness, and Poisson ratio of wing, 
respectively. 

3.2 AERODYNAMICS MODELING 

An unsteady vortex lattice method is used to calculate the aerodynamic forces. The flow is 
assumed incompressible, inviscid, and irrotational. The plate and wake divided into a number 
of elements. In the wake and on the wing, all vortex elements have equal size x∆ , in the 
stramwise direction. Vortex rings are place on the plate and in the wake at quarter chord of 
the elements. At the three-quarter cord of each plate element, a collocation point is placed for 
the downwash, i.e., the velocity induced by vortex rings are equal with downwash arising 
from unsteady motion of wing. As described in [6], the aerodynamic matrix equation can be 
expressed as 

[ ]{ } [ ]{ } { } 11 ++ =Γ+Γ ttt wBA  (34) 
where [ ]A  and [ ]B  are aerodynamic coefficient matrices, and { } 1+tw  is the non-
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dimensional downwash at time step 1+t  arising from the unsteady motion of wing. 

3.3 AEROSERVOELASTIC EQUATIONS 

With combining Eq.s (31), (32) and (30), we obtain coupled transverse and aerodynamic 
equations in matrix form (35), where the vector θ  is the state of the plate,{ } { }Tqq&=θ and 

1D  and 2D  are matrices describing the plate structural behavior , 1C  and 2C  are matrices 
describing the behaviours of distributed vortex elements on the plate itself. Eqs. (28-29) 
coupled with Eq. (35) represent complete aeroservoelastic state space equations. 
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 (35) 

4. NUMERICAL RESULTS 

The response of rectangular plate model, with and without control is considered. Here an 
aluminum alloy plate of constant thickness with aspect ratio of 1=≡ c

LAR  is considered. 

The plate has stream-wise length mc  3.0= ,thickness of mh 001.0= , and Poisson’s ratio 
of 3.0=υ . Plate and wake were modeled using 250  vortex rings, i.e., five elements in span-
wise direction and fifty elements in stream-wise directions. For in-plane displacement eight 
modal numbers, i.e. four in streamwise and two in spanwise directions and for transverse 
displacements twenty modal numbers, i.e. ten in streamwise and two in spanwise directions 
are used. The vortex relaxation factor α  assigned 992.0 . 

Typical eigenvalues for the basic vortex lattice model obtained from Eq. (34) are shown 
in Figs. 2 and 3. Fig. 2 shows eigenvalues in terms of discrete–time multiplier z  and Fig. 3. 
shows real and imaginary parts of the usual continuous–time eigenvaluesλ . These results are 
in agreement with the results presented in [6]. 

When the non-linear force NF  and actuator force in Eq. (35), is set to zero, a linear aero-
elastic model is obtained. Solving these equations for aero-elastic eigenvalues, determines the 
stability of the system. We increase speed from zero to arbitrary velocity and compute the 
dominate eigenvalues. When the real part of any eigenvalues becomes positive, the entire 
system becomes unstable. Fig.4 shows a typical representation of the eigenanalysis in the 
form of real eigenvalues as a function of the flow velocity. There are two intersections of 

)Re( iλ  with the velocity axis. One at smU f /42=  for critical flutter velocity and the other is 

smUd / 3.54=  for divergent velocity. The results of this section are in complete agreement 
with results obtained by [18]. 

In order to investigate the nonlinear behaviour of limit cycle oscillation, complete 
aeroealstic Eqs. of (35) and (28-29), and without control input must be solved. A typical time 
histories of non-dimensional transverse displacements are shown in "Fig.s 4 and 5" . In "Fig. 
4", the aerodynamics forces effectively damped the non-linear vibrations of the structure, but 
in "Fig. 5", aerodynamics and nonlinear structural forces are in equilibrium and non-linear 
system undergoes a limit cycle oscillation. 

At the end, SOF controller designed for this system at velocity of sm /60  which is 
greater than linear flutter velocity With determining the optimal gain for resulting linear 
system, comparison of dominate poles of the closed loop and open loop poles are plotted in 
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Fig. 6. From this figure, we see that branches of open loop poles )(o  move to right half of 
complex plane, but branches of closed loop poles )(+  move to the left half complex plan, and 
closed loop system becomes stable. Also real parts of eigenvalues versus velocity up 
to sm /60  is shown in Fig. 7. 

 
Fig:2. Discrete eigenvalues of aerodynamics 

model. 

 
Fig 3: Eigenvalue solution of linear aeroelastic 

model. 

  
Fig 3: Eigenvalue solution of linear aeroelastic 

model. 

 
Fig 4: Transverse displacement at velocity of 

sm /40  (without control). 

 
Fig 5: Transverse displacement at velocity 

of sm /60  (without control). 

 
Fig. 6: Eigenvalue solutions of closed loop and 
open loop linear aeroelastic model with SOF 

From this figure, we see that with increasing velocity, real parts of eigenvalues for linear 
open loop system becomes positive and system becomes unstable (+ symbol), but for closed 
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loop system, these poles remains negative ( o  symbol). Response of closed loop system at 
velocity greater than linear flutter velocity with SOF controller is shown in Fig. 8. 

 
Fig:7. Real parts of eigenvalue of open and 

closed loops linear aeroelastic model. 
 

Fig 8: Transverse displacement at velocity 
of sm /60  (with control). 

5. CONCLUDING REMARKS 

In the present work, limit cycle oscillation control of nonlinear aero-elastic wing with 
structural nonlinearity is considered. In this system limit cycle oscillation is due to 
counteractions of unstable poles of linear aero-elastic system and structural nonlinearity. The 
unstable poles tend to increase vibration amplitude, while structural nonlinearities tend to 
reduce this amplitude, and from these limit cycle results. Hence, if we stabilize these unstable 
poles, the whole system will be stable and limit cycle will be suppressed. For this purpose, a 
SOF controller is designed.Combination of above mentioned controller with linear part of 
aero-elastic system, push the unstable poles of the open loop system to left half of Laplace 
plane, and so the instability of linear part of the closed loop system is suppressed and limit 
cycle oscillation is diminished. 
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