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Abstract

A new technique for spectral analysis is proposed for application to music signals. The fre-
quency transform presented in this work eliminates the need for multiplications, by requiring
the sole use of additions making the ASIC (Application Specific Integrated Circuit) implemen-
tation simpler. The transform is generalized and can be applied to any band limited spectral
analysis. The proposed Fractional Fourier Transform shows almost no error in the analysis
when compared to standard Discrete Fourier Transform.

1. INTRODUCTION

The most efficient technique often used for spectral analysis is Fast Fourier Transform. The
N point FFT requires Nlog2N multiplications and additions of complex numbers. In order to
avoid multiplications, it is suggested that square waves may be used in place of sinusoidal
waves for spectral estimation. The advantage of using square waves in terms of computation
has been exploited earlier as Haar Transforms or Walsh Transforms etc [7, 8, 1]. In this work,
the aim is to obtain exact Fourier spectrum for a specified frequency range using square waves
in place of sinusoidal functions. The square waves consist of amplitudes of +1 and -1 only and
thus avoid any multiplications required in FFT. Poorman’s Transform developed by Michael.
P. Lamoureux also eliminates multiplications [2, 3, 4]. If the signal is integrated initially, the
computations get reduced as the multiplication and integration of half cycle of square wave
reduces to simple subtraction of the values at the edges of the square wave [10]. A composite
square wave is proposed in this work, so as to approximate the sine wave. This composite
square wave is realized by the summation of the fundamental square wave and its harmonics.
It is shown that such a wave can extract exact spectral amplitudes within a certain range of the
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spectrum.The technique is suitable for pitch analysis of music signals as the analysis is limited
to an octave bandwidth. It is applied to Indian Classical Music for note detection.

2. ESTIMATION OF MINIMUM QUALITY FACTOR FOR PITCH
PERCEPTION IN INDIAN MUSIC

The ears of experienced musicians identify small deviations in tune quite easily. The scale of
Indian Music divides an octave into seven swaras and further divides them into srutis. According
to Dr.S.S.Bhave, a scientist cum musician working with CSC group at TIFR, Mumbai there are
three intervals that are represented by a sruti in Indian Music system [5]. The intervals are
81
80

, 25
26

, 256
243

. The smallest of the sruti ratios so identified is 81
80

. This is similar, as resolving
1.25Hz in 100Hz. The resolution power of good musician is considered to be equal to 1Hz at
100Hz [6]. This is equivalent to a per unit resolution of 0.01. The Fractional Fourier Transform
(FrFT) technique developed here is optimized for this resolution and uses this fact for reducing
computations.

3. COMPOSITE SQUARE WAVE APPROXIMATION OF A SINE WAVE

According to Fourier series estimation, square wave can be expressed as a sum of sine and
cosine functions. Thus, a sine wave may be expressed as a sum of square waves, consisting of
a fundamental frequency component and its frequency multiples. The first order approximation
of sine wave is a symmetrical square wave oscillating between the values +1 and −1, where
the +1 value corresponds to positive half cycle of sin(ω0t) and −1 corresponds to its negative
half cycle. Mathematically, the set of harmonics of these square wave functions may be defined
using signum functions as,

Se(nω0t) = sgn[cos(nω0t)] (1)

and
So(nω0t) = sgn[sin(nω0t)]. (2)

The set of sine and cosine functions form an orthogonal set and any function in time domain can
be expressed as a sum of orthogonal projections. Unfortunately, the square wave harmonics are
not orthogonal. The accuracy of approximation improves by increasing the number of harmon-
ics of the square wave that are taken into consideration. Here, the basis for this approximation
is worked out. The Fourier expansion of the square wave Se(ω0t) is given by

s(t) = 4A
π
{cos(2πf0t) −

1
3

cos(3.2πf0t) + . . . + (−1)n

2n+1
cos((2n + 1)2πf0t) + . . .}

= 2A
π

∑n=+∞
n=−∞

(−1)n

(2n+1)
e{j(2n+1)ω0t}.

(3)

Thus, cos(ωot) may be approximated as π
4
Se(ωot). The error term will consist of third, fifth and

higher odd harmonics of ωot. This may be written mathematically as,

cos(ωot) = π
4
Se(ωot) + 1

3
cos(3ωot) −

1
5

cos(5ωot) + . . .

+ (−1)n+1

2n+1
cos((2n + 1)ωot) + . . . .

(4)
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Approximating cos(ω0t) by π
4
Se(ω0t) results in an error e(t). This error is given by,

e(t) =
1

3
cos(3ωot) −

1

5
cos(5ωot) + . . . +

(−1)n+1

2n + 1
cos((2n + 1)ωot) + . . . . (5)

The mean square value or the power content of cos(ωot) is 1
2

while that of π
4
Se(ωot) is π2

16
. Thus

the power content of error term is 0.114 {i.e., (π2

16
− 1

2
)}, which is approximately 22.8%. The

power of the error function is 0.114. But this power subtracts from that of the square wave
π
4
Se(ωot). This is because Se(ωot) is not orthogonal to the terms in the error function. The

error is reduced by replacing cos(3ωot) by an equivalent square wave and higher harmonics of
cos(3ωot). This expression is obtained by replacing ωo by 3ωo in the eqn. 4, as

cos(3ωot) = π
4
Se(3ωot) + 1

3
cos(9ωot) −

1
5

cos(15ωot) + . . .

+−1n+1

2n+1
cos((2n + 1)ωot) + . . . .

(6)

Combining eqns. 4 and 6, we get

cos(ωot) = π
4
{Se(ωot) + 1

3
Se(3ωot)} −

1
5

cos(5ωot)

+1
7

cos(7ωot) + 1
11

cos(11ωot) −
1
13

cos(13ωot)

− 1
17

cos(17ωot) + 1
19

cos(19ωot) + 1
23

cos(23ωot) − . . .}.
(7)

Note that the multiples of 3ωot get exactly canceled out. The power of the signal cos(ωot) is 0.5

while that of square wave function is π2

18
. Thus the power in the error term gets reduced to nearly

0.046. This approximation may be extended by replacing cos(5ωot) and cos(7ωot) and other
higher harmonics also by the square wave functions Se(5ωot) and Se(7ωot) and corresponding
harmonic components leading to a more exact expression as

cos(ω0t) =
π

4
{Se(ωot) +

1

3
Se(3ωot) −

1

5
Se(5ωot) +

1

7
Se(7ωot)} + e(t) (8)

. The power of the function, the power of the approximated square wave and that of the error
term are 0.5, 0.520335 and 0.020335 respectively. The power of the error term is thus reduced.
It can be reduced further by replacing the higher harmonic terms with the corresponding square
wave components.Since the signal is band-limited, it is not necessary to evaluate all the terms in
the expansion. The following section gives the expressions for evaluating exact Fourier spectral
amplitudes using the composite square waves in place sinusoidal function.

4. ESTIMATION OF SQUARE WAVE FOURIER COEFFICIENTS

To evaluate square wave Fourier coefficients the term cos(nωot) in Fourier coefficients {an}

is replaced by first order square wave approximation π
4
Se(nωot). The resulting coefficients are

given by
a′′

0 = a0 (9)

,

a′′
n =

2

T

∫ T

0

x(t){
π

4
Se(nωot)}dt . (10)
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and
b′′n =

2

T

∫ T

0

x(t){
π

4
So(nωot)}dt . (11)

To find a′′
n in terms of {an}, the square wave Se(nωot) in eqn. 10 is replaced by its Fourier

components as
a′′

n = π
4

2
T

∫ T

0
x(t){cos(nωot) −

1
3

cos(3nωot) + . . .

+(−1)m 1
(2m+1)

cos((2m + 1)ωot) + . . .}dt

= an − a3n

3
+ a5n

5
− . . . +

(−1)ma(2m+1)n

(2m+1)
+ . . . .

(12)

The result shows that a′′
n differs from an by a fraction of the amplitudes of third, fifth and higher

odd harmonics of nωo present in x(t). This approximation has infinite terms. In practice one
has to limit the sequence upto certain number of terms. The truncated sequences are denoted by
cos′(nω0t) and sin′(nω0t). As an example, the terms upto 7th harmonic only are considered in
the truncated sequences. The expression for cos′(nω0t) with terms upto seventh harmonic come
out as,

cos′(nω0t) = π
4
{Se(nωot) + 1

3
Se(3nωot)

−1
5
Se(5nωot) + 1

7
Se(7nωot)}

(13)

The error terms contain 11th and higher harmonics only. All the lower harmonics either get can-
celed or are taken into account by the square wave terms. The exact expressions of cos′(nω0t)

come out as,
cos′(nω0t) = cos(nωot) −

1
11

cos(11nωot)

+ 1
13

cos(13nωot) + 1
17

cos(17nωot) + . . .
(14)

When square wave expression of cos′(nω0t) given in eqn. 13 is used as an approximation of
cos(nωot) the resulting coefficients a′

n are given by

a′
n = 2

T

∫ T

0
x(t)

[

π
4

{

Se(nω0t) + 1
3
Se(3nω0t)

−1
5
Se(5nω0t) + 1

7
Se(7nω0t)

}]

dt
(15)

These coefficients differ from their true values an due to the harmonic terms neglected. Their
relation is derived from the relation given in eqn. 14 as

a′
n = an −

1

11
a11n +

1

13
a13n +

1

17
a17n + . . . (16)

. Similarly,
b′n = bn −

1

11
b11n −

1

13
b13n −

1

17
a17n + . . . . (17)

The eqns. 16 and 17 show that the estimated value, a′
n is corrupted by the addition of eleventh,

thirteenth and higher harmonics. For a band-limited voice signal, if the highest frequency com-
ponent is less than 11nωo, then all the components a11n, a13n, a17n, . . . etc. will be zero and the
calculated value a′

n will be exactly equal to an. In case the highest frequency of x(t) has har-
monic components greater than 11nωo, more higher harmonic terms may be added in the square
wave expansion. If the composite square wave signal includes (2m−1)th square wave harmonic,
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the error term includes (2m + 1)th harmonics and other higher harmonics. But increasing the
square wave harmonic terms beyond the highest frequency of signal does not increase the accu-
racy in any way. The number of square wave harmonic terms to be considered so that one can
obtain error free spectral analysis for the pitch estimation of a vocal music signal depends on
the spectral range of analysis. This is discussed in the following section.

5. NUMBER OF HARMONICS IN COMPOSITE SQUARE WAVES FOR THE
ANALYSIS OF A VOCAL MUSIC SIGNAL

When the composite square waves are used in place of sinusoidal functions, the exact spectrum
can be obtained in the limited range of frequencies only as the case of vocal music signal.The
number of square wave terms to be included in the realization of the composite square wave
depends upon this range. Let this range be from f1Hz to f2Hz. For audio signal analysis, this
range starts from a frequency of 100Hz and extends upto a range of few thousands of Hz
for a resolution of 1%, as mentioned above. For the estimation of the minimum number of
square wave harmonics required for pitch analysis of such a signal, consider a bandlimited
signal with a maximum frequency of fhHz. When the composite square wave having square
wave terms upto (2m − 1)th harmonic is used to estimate the spectrum, several image spectra
are produced which corrupt the result. These image spectra are produced because the (2m+1)th

and higher harmonic terms are not compensated in the composite square wave as its takes care
of (2m − 1)th harmonic only. The frequency range of these image spectra extend from d.c.
to fh

2m+1
. The coefficients corresponding to the region fh

2m+1
to fh is not corrupted by image

spectra. The desired range of spectral estimation which extends from f1Hz to f2Hz should lie in
this uncorrupted region. The value of m in the composite square wave be such that fh

2m+1
< f1.

In order to construct the simplest composite square wave, one has to minimize the value of m.
This leads to the condition,

2m − 1 <
fh

f1

< 2m + 1. (18)

That is, for a given ratio fh

f1
, the order of square wave harmonic terms to be included in the

composite square wave should be 2m−1, which is constrained by the eqn. 18 given above. The
above analysis is given for the continuous time signals. In practice, this has to be implemented
on a computer in sampled domain. The necessary algorithm is given below.

6. COMPOSITE SQUARE WAVE ESTIMATION FOR ERROR FREE
FOURIER COEFFICIENTS

The signal is first sampled at a certain fixed rate of fs samples per second and the values are
stored in an array. Due to non-stationary nature of signal, we subdivide the array into packets of
suitable length. This process is similar to that adopted in the evaluation of Short Time Fourier
Transform. Let the length of this packet be N . The integrals similar to those given in eqn. 15
are to be evaluated using the elements of this array. The integrals are converted into summa-
tion.Instead of evaluating the entire expression consisting of all harmonic terms, it is suggested
that coefficients should be first evaluated using a single square wave and compute the compos-
ite square wave coefficients later. The single square wave coefficients are termed as a′′

n and b′′n
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(Refer eqn. 10). The integral expressions are,

a′′
n =

2

T

∫ T

0

x(t){
π

4
Se(nω0t)}dt (19)

and
b′′n =

2

T

∫ T

0

x(t){
π

4
So(nω0t)}dt. (20)

The above expressions can be modified for the analysis in sampled domain as,

a′′
n =

2

N

π

4

N−1
∑

k=0

x(k)Se(
2πnk

N
) (21)

and

b′′n =
2

N

π

4

N−1
∑

k=0

x(k)So(
2πnk

N
). (22)

First these two arrays {a′′
n} and {b′′n} may be evaluated for a range of values of n. These coeffi-

cients correspond to single square wave functions. The frequency range for which the spectral
amplitudes are to be evaluated is from f1 to f2. The cosine and sine waves being the sum of
single square waves of corresponding frequency and their harmonics, the coefficients a′

n and b′n
come out as

a′
n =

∞
∑

m=0

−1m

2m + 1
a′′

(2m+1)n (23)

and

b′n = b′′n −
∞

∑

m=1

−1m

2m + 1
b′′(2m+1)n (24)

where m is an integer such that it is not a multiple of 3. These values of an and bn correspond
to the sum of the above sequences when infinite terms are taken into account. But since the
signal is band limited, most of the higher terms come out to be zero as already explained earlier.
One step of a′′

n corresponds to a frequency interval ∆f = fs

N
. The lowest frequency of desired

spectrum, f1 corresponds to a value of n equal to f1N

fs
and the highest frequency fh corresponds

to a value of n equal to fhN

fs
. This value of n may be termed as nmax. Thus, the sequences

given above may be truncated to a few harmonics only as all terms a′′
kn and b′′kn corresponding

to values of kn > nmax may be neglected.Consider, a signal x(t) having a highest frequency
component of fm Hz. It is desired to analyze the signal in the frequency range f1Hz to f2Hz
only. This is applicable to musical sounds. Let us consider a case where the desired spectral
range is from 100Hz to 500Hz. The signal may contain higher harmonic contents, which are
as high as 15KHz. A suitable filter may be used to attenuate the higher harmonic components
lying above 1KHz. The frequency band of 100Hz to 1000Hz produces images at 1

11

th
, 1

13

th
, 1

17

th

and higher fractional harmonics if only four terms are considered in a composite square wave.
Thus, the maximum value of frequency at which the image distortion appears is 1000

11
Hz that

is 91Hz. This does not disturb the range of 100Hz to 500Hz. The frequencies above 1000Hz
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are filtered out to achieve the exact spectral analysis of the signal using square waves in the
desired range of 100Hz to 500Hz which is specified above. A signal consisting two sinusoidal
frequency components of equal amplitude at frequencies 240Hz and 270Hz, is analyzed using
composite square wave. The spectrum obtained is given in fig. 1 which shows no trace of any
spurious frequencies.

0 100 200 300 400 500 600 700 800 900 1000
Frequency in Hertz

am
pl

itu
de

1 

Figure 1. Frequency Estimation Using Composite Square Wave

7. ELIMINATION OF MULTIPLICATIONS IN COMPOSITE SQUARE
WAVE FFT

For an N-point FFT, the discrete time signal is multiplied by e
j2πmk

N where k represents the
discrete frequency and m is the sample number. This factor is a sum of real and imaginary
components given by cos( 2πmk

N
) and sin(2πmk

N
). Each of these can be replaced by even and odd

square waves. These square waves may be represented by Se(k, m) and So(k, m) as,

Se(k, m) = sgn[cos(2πmk/N)] (25)

So(k, m) = sgn[sin(2πmk/N)]. (26)

Se(k, m) has a total of k cycles in the entire width of N samples. Thus, k represents the fre-
quency of square wave if N samples cover a duration of 1 sec. It completes one cycle in N/k

samples. The function Se(k, m) has a value of +1 whenever cos(2πmk/N) ≥ 0 and −1 else-
where. These square waves may be used in place of sine and cosine functions to obtain a trans-
formation into frequency domain . This is similar to Short Time Fourier Transform (STFT) and
may be termed as Fractional Fourier Transform (FrFT). These transforms result in even and odd
functions as XE(k) and XO(k), which are given by

XE(k) =

N−1
∑

m=0

x(m).Se(k, m) (27)
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and

XO(k) =
N−1
∑

m=0

x(m).So(k, m). (28)

The overall value of X(k) is given by

X(k) = XE(k) − jXO(k). (29)

The function X(k) contains the amplitude of the kth frequency component plus certain fractions
of its odd harmonics. The number of multiplications and additions come out to be equal to 2N 2.
But, because Se(k, m) and So(k, m) have values +1 and -1 only, all the multiplications can be
avoided. This is shown in the following analysis.

7.1. Signal Preconditioning for Reduced Computational Complexity

When the signal x(m) is multiplied by a square wave Se(k, m) or So(k, m) consisting of positive
and negative half cycles of amplitude +1 and -1, and is then integrated, all the sample values
coming within positive half cycle of the square wave get added up while those coinciding with
the negative half cycle are subtracted.Let us consider that the number of samples in one cycle
of square wave is 2l. That is,

l =
N

2k
. (30)

This can be viewed in fig. ??. The function XE(k) can be written as sum of sequences, given
by

XE(k) =
∑N

m=0 x(m)Se(k, m)

=
∑

l
2
−1

m=0 x(m) −
∑

3l
2
−1

m= l
2

x(m) +
∑

5l
2
−1

m= 3l
2

x(m) − . . ..
(31)

For each value of k, this summation has to be done for the entire sequence. The repeated addition
can be avoided if a new sequence is initially obtained by integrating the sequence x(m). Let this
integrated sequence be xi(l), which may be defined as,

xi(l) =
l−1
∑

m=0

x(m) (32)

and
xi(0) = 0. (33)

This reduces the summation of the sequence to simple subtraction as

l2
∑

l1

x(m) = xi(l2) − xi(l1). (34)
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Using this property, we may write an expression for XE(k) of eqn. 31 as

XE(k) = (xi(
l
2
) − xi(0)) − (xi(

3l
2
) − xi(

l
2
)) + . . .

= −xi(0) + 2xi(
l
2
) − 2xi(

3l
2
) − . . . .

(35)

Similarly, the expression for XI(k) can be obtained from the sequence xi(m) as

XO(k) = −xi(0) + 2xi(l) − 2xi(2l) + 2xi(3l) − . . . . (36)

Here, only additions and subtractions are involved and no multiplication is required. There are
2k additions or subtractions required to evaluate each XE(k) and XO(k). As k has to be varied
from 1 to N

2
to evaluate all the coefficients, the total number of computations come out to be

about N2

4
. Though the order of computations is N 2, the computations are simple addition of real

values as compared to complex multiplications and additions required in FFT. Secondly, we
need not evaluate all the coefficients X(k) for k = 1 to k = N

2
, but can limit our computation

to desired frequencies only.

8. COMPUTATIONAL COMPLEXITY

A comparison of computational effort for the analysis of an audio signal using FrFT and stan-
dard FFT using SWSTT is made in the following analysis. The signal is passed through a low
pass filter with a cut off frequency of 1000Hz before sampling.The range of spectral estimation
is from f1 = 100Hz to f2 = 500Hz and the highest frequency in the signal fh = 1000Hz. For
FFT analysis, the number of samples should be a power of 2. When the number does not match,
zeros are added to make the number equal to the power of 2. Here, let the sampling be done
at 2048 samples per second and consider bins of 1 second. The computational requirements
for this analysis will be of the order of Nlog2N for each bin. This figure comes out as 22528
per bin. Thus, the total number of basic add operations required for one complex operation
is approximately 100. The total number of basic add operations for FFT analysis of a packet
comes out as 2.5 × 106. The computational requirements of FrFT is evaluated below. Consider
a square wave of 1sec. duration at a frequency of fHz. The signal x(n) is first integrated to
realize a new sequence xi(n). The number of half cycles in it are 2f. The evaluation of the even
component at this frequency requires 2f additions or subtractions. The evaluation of odd compo-
nent requires another 2f computations. Thus, the total number of computations at a frequency
f come out as 4f . When square wave harmonics upto seventh order are taken into account,
computations at frequency values of 3f, 5f and 7f are also required. This requires a total of
{f +3f +5f +7f}×4 = 64f computations. But many of these computations are not required.
Firstly, the computations for all the frequency values at interval of 1Hz need not be computed.
The number of computations depends upon the resolution desired. For musical pitch detection,
1% frequency resolution is adequate as estimated in section 2. Thus, values of an and bn for
frequencies 100Hz to 200Hz are computed with an interval of 1Hz, from 200Hz to 300Hz with
interval of 2Hz and from 300Hz to 400Hz with intervals of 3Hz and so on. Secondly, the com-
putations need to be carried out only for 3rd, 5th and 7th harmonics lying in the desired range.
The repetition of computations occuring can be avoided. For example, the analysis for 100Hz
frequency requires values corresponding to 300Hz, 500Hz and 700Hz. These values need not
be computed again for the corresponding frequencies. Also the coefficients corresponding to
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higher than maximum frequency in the signal come out to be zero. Thus, a′′
n and b′′n need not

be calculated for square wave frequencies above fh. With the above modifications, the number
of computations required for the analysis in the range 100Hz to 500Hz come out as 2.46 × 105

only. This number is less than the number of computations estimated for FFT. The above two
schemes were implemented on a Pentium - III computer. The timings observed for both the
techniques FFT and FrFT came out to be 9107 µsecs and 4013 µsecs respectively. This shows
that FrFT proves faster than FFT. The important advantage of the FrFT is in the reduction of
multiplications which makes the hardware realization more economical.

9. COMPOSITE SQUARE WAVE FOURIER TRANSFORMS APPLIED TO
MUSIC SIGNALS

For a comparison of Composite Square Wave Fourier Transforms with FFT, these techniques
are applied to a vocal music signal and the results are compared. A musical piece in Raga Yaman
performed by Dr.S.B.Sharma, former Head, Dept. of Music, Dayalbagh Educational Institute,
Dayalbagh, Agra, INDIA is selected. This raga has all the swaras of the octave in a sequence
Sa, Re, Ga, Ma, Pa, Dha, Ni,Ṡa. Ṡa denotes ‘Sa’ in next higher octave. A Tanpura is used as
a drone to accompany the vocal sound. The duration of the sample is about 15 seconds. The
signal is sampled at the rate of 48000 samples per second using a standard Sound Card. The
signal is divided into 20 bins each of 32768 samples. Each bin occupies a time of nearly 2

3

rd of
a second and the number of samples in each bin is chosen to be a power of 2. A digital filter
algorithm is used to cutoff unwanted higher frequencies. The desired range of the first octave
being 240Hz to 480 Hz, the range of search of the pitch is limited to 100 Hz to 720 Hz. The
Pass band limit of this low pass filter is kept at 720 Hz. The pass band starts at 1KHz. Since,
now the signal contains only the frequencies upto 1KHz, the signal is downsampled by a factor
of 20. Thus, the sampling rate of the signal has been compressed to 2400. This bandlimited
signal is subdivided into bins of 2048 samples each. The spectral analysis of each bin is done
separately using all the three methods. The algorithms are coded in ‘C’ language and compiled
on a UNIX operating system. The details of analysis of each method are given below. The two

Note Ratio w.r.t Expected Observed
note ’Sa’ frequency (Hz) frequency(Hz)

FFT FrFT
Sa 1 314.00 314 315
Re 9

8
353.25 353 353

Ga 10
8

392.50 394 394
Ma 4

3
418.66 415 415

Pa 3
2

471.00 468 468
Dha 27

16
529.87 522 523

Ni 15
8

588.75 586 586
Ṡa 2 628.00 625 625

Table 1. Comparison of theoretical estimates and observed frequencies
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different tools i.e. the standard FFT and the proposed FrFT showed similar results as shown in
table 1. The FrFT is matching with FFT closely. Some other frequency components are found
to be present throughout the sample duration. These are sub-harmonics of the voiced sound
and frequencies sounded by Tanpura. The voice signal is complex and has several harmonics
and sub-harmonics. In-spite of these components, the true tone is clearly visible. The musician
sounds one note and changes to next note in a sequence. The voice slightly dips while this
change occurs. The true frequency is observed nearly at the center of the time taken by a note.
The results obtained by FFT and FrFT are matching exactly. The timings of the two methods are
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Figure 2. Notes ’Sa’ and ’Re’ as obtained from FFT, FrFT

also compared for a 2048 point analysis and 32768 point analysis. The time taken for analysis
is given in table. 2. The above data shows that the FrFT consumes the smaller time duration as

Tool Time (ms) Time(ms)
(N=2048) (N=32768)

FFT 9.1 799.6
FrFT 4.0 253.2

Table 2. Timing comparison for both techniques

compared to FFT.

10. CONCLUSIONS

The proposed FrFT extract exact Fourier Coefficients of a band-limited periodic signal for a
limited range of frequencies by using square waves in place of sinusoidal waves. This results in
simpler arithmetic as the need of multiplication is avoided. Though the number of computations
is higher, both the computational time and hardware requirements are reduced.
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