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Abstract 
 
All data has symmetry and anti-symmetry embedded in it. This paper discusses various 
aspects of symmetrical transformations that can be applied to data to give machine condition 
information. These transformations lead to novel views of the information. Combining these 
symmetrical transformations with the more traditional methods of Eigenvalue/vector and Fast 
Fourier Transform analyses provides views of the source and extent of the problem. To 
illustrate the various views of the vibration information, results from a large (4.2m diameter) 
Coal Reclaimer slow speed (4rpm) slew bearing are presented. Many of the transformations 
are also currently being evaluated on an experimental test-rig specifically designed for the 
monitoring of horizontal slow speed (1 to 4 rpm) slew bearings. 

1. INTRODUCTION 

The use of vibration data from slow-speed slew-bearings has been notoriously unsuccessful in 
predicting bearing failure. There are a number of reasons for this. Primarily, the very slow 
speeds involved (1 - 4 rpm) lead to very low rotational energy release. The operation of a slew 
bearing is often intermittent and non-cyclic. The data used in this paper is from a Coal 
Reclaimer. This machine has 2 large 4.2m diameter, vertically mounted, slew bearings 
supporting the reclaiming buckets and rotates at approximately 4.3 rpm in one direction in a 
continuous mode. 

Current condition monitoring methods provide a sample of data that is short in 
duration containing a few thousand samples (4098 max).  Demodulation/Fourier type data 
analyses of vibration from slew bearings have been unsuccessful in determining the useful life 
and /or time to replace. Therefore, we have to ask two simple questions. 

What can we extract from data that is new and informative?   We can find information 
that involves destroying/modifying the original data and/or information that does not involve 
destroying/modifying the original data. Any process that modifies/destroys information can be 
‘classified’ as a filter.  
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How can we determine a recognisable pattern in a set of data such that the data 
remains essentially the same? Symmetry/anti-symmetry springs to mind when we talk about a 
recognisable pattern. We introduce a number of operators that extract the symmetry/anti-
symmetry that is embedded in data and illustrate the use of these operators on raw 
acceleration data obtained from a slow speed slew bearing on the Coal Reclaimer previously 
described. Surprisingly, McWeeny [1] and Cantwell [2] offer very little really useful 
information on symmetry of data methods. Pickover [3] and Wu [4] demonstrate an 
interesting visualisation which forces the data into a symmetrical state space pattern. However 
this image is not reliant on the symmetry embedded in the data. 

2. SYMMETRY OF A VECTOR 

Stenger [5] when discussing point-of-view invariance says that ’Often invariance is expressed 
by the term symmetry’ and goes on to say ’If you wish to build a model using space-time as a 
framework and you formulate that model so as to be space-time symmetric, then that model 
will automatically contain what are usually regarded as the three most important “laws” of 
physics, the three conservation principles’. These three; energy, linear momentum and angular 
momentum, must be conserved. So it seems that symmetry is a desirable, fundamental 
property to be explored.  

We begin by looking at a dataset 
>
x containing two members

1
x and

2
x . Note that this is a 

vector hence the >  indicating a forward direction. We can define the symmetric vector 

1221
,5.0 xxxxx ++=

+>
 and the anti- (skew) symmetric vector 

1221
,5.0 xxxxx −−=

−>
 such 

that 
+>
x +

−>
x =

>
x . Obviously for completeness we could have a vector

<
x . In general, any length 

vector 
>
x  has 

1
5.0 −−

+>
+=

ini
xxx  and

1
5.0 −−

−>
−=

ini
xxx  for 1...2,1,0 −== nmi  . This 

statement also says that any ‘truly’ random sequence has by default symmetry and anti-
symmetry as properties; be it global or local, and hence the notion of randomness is not quite 
correct. Note that these operations can be classified as first order non-linear filters and that we 
now have two orthogonal vectors from a single vector. They are orthogonal because the 

vector dot product [6] ⋅
+>
x

−>
x =0 . As a consequence we can say all symmetric and anti-

symmetric vectors are orthogonal. That is, any symmetric vector of length  n  is orthogonal 

with any n  length anti-symmetric vector. For completeness
1−−

>×
=

ini
xxx  is symmetric and a 

2nd order filter whereas 
1−−

÷>
÷=

ini
xxx  is neither symmetric nor anti-symmetric. 

 
Figure1. 

>
x  Acceleration vs. time at 01/05/2003.         Figure2. 

>
x  Acceleration vs. time at 28/07/2006. 
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Figures 1 and 2 are the raw accelerometer vectors for the two dates 01/05/2003 and 
28/07/2006 

 
Figure3. 

+>
x  Acceleration vs. time at 01/05/2003.        Figure4. 

+>
x  Acceleration vs. time at 28/07/2006. 

              
Figures 3 and 4 are the global symmetric vectors and Figures 5 and 6 are the global anti-
symmetric vectors for the two dates 01/05/2003 and 28/07/2006 

 
Figure5. 

−>
x  Acceleration vs. time at 01/05/2003.    Figure6. 

−>
x  Acceleration vs. time at 28/07/2006. 

             

Note in both instances,
+>
x and

−>
x , we see more structure in the images. A visually more 

distinctive pattern is visible when compared to Figures 1 and 2. The
+>
x ,

−>
x  pair allow us to 

produce a state space (probability) map that contains all this geometric symmetry. Figure 7 

and Figure 8 are examples of this. They are formed by plotting  
+>
x  versus the

−>
x . 

  
Figure7. 

+>
x  vs.

−>
x  Accel’n space at 01/05/2003.          Figure 8. 

+>
x  vs. 

−>
x  Accel’n space at 28/07/2006. 

 
You may note the spreading out of the image in Figure 8 in comparison to Figure 7. 

This is the result of progressive bearing wear. 
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We now introduce the following convention that 
+>
x

−>
x is the forward symmetric 

transform of a forward asymmetric transform of
>
x .You may note that if we try to do this 

operation for 
+>
x or

−>
x  we get 

+>
x

−>
x =

−>
x

+>
x =0  , 

−>
x

−>
x ≠ 0  and

+>
x

+>
x ≠ 0 . This result points us in 

two different directions. The first direction is to somehow extend  
+>
x

−>
x  or 

−>
x

+>
x  terms. The 

second direction is to extend 
+>
x

+>
x  or

−>
x

−>
x terms. This leads us to a discussion about symmetry 

breaking. 

3. SYMMETRY BREAKING 

We now return to the first direction on handling
+>
x

−>
x and

−>
x

+>
x . Here we have considerably 

more choice. We can do this by considering the concept of breaking symmetry [7, 8].  It turns 
out that there are many different ways to ‘break symmetry’. At this point we introduce the 

symbol ψ  as our symmetry breaking operator and 
ψ+>
x indicate that we have formed the 

forward symmetry of 
>
x  and broken it. We can break symmetry by considering the possible 

combinations that are permissible with removing only a minimum of data. Minimum here 
implies no data lost or perhaps the very last (or first) value in the dataset. 

Whilst we consider the dataset as one fixed length vector we can only form one 
symmetry/anti-symmetry operation. We can treat the dataset as consisting of  )int( mnp ÷=  
sequential groups of sub-datasets where n ,m  are integers such that nmp =×  and nm ≤  is 
the number of data elements in each subset. Our initial discussion on symmetric vectors, 
treated the case where nm =  and this is the condition we discuss predominantly in this paper. 
Other possibilities are a series of operations where we consider each factor m  in nm =!   
subject to nmp =× . This method provides some continuity in the process. Alternatively the 
set of numbers p  that satisfy nmp =×  would not necessarily provide continuity between 

successive operations
ψ+>
x

ψ−>
x . 

Yet another possibility of symmetry breaking is to consider subsets of data that are 

equally spaced, that is, miimi xxxx +−

+>
= ,,

ψ
 for 1,,1, −−+= mnmmi K . We use this form in 

the Symmetric Wave Decomposition (SWD) [9] algorithm which is a special form of 

symmetry breaking for =
+> ψ
x  

+>
x

+>
x

+>
x

+>
x …. This is achieved by recursively visiting near 

neighbours in the set. This allows us to reconstruct in correct time sequence the individual 
waves contributing to the final measured waveform. No redundant information is generated. 

 
Figure9. SWD Accel’n vs. time at 01/05/2003.      Figure10. SWD Accel’n vs. time at 28/07/2006. 
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The Figures 9 and 10 illustrate some of the output waves for the 2 datasets of the Coal 

Reclaimer. Each colour identifies an individual ‘decomposed’ wave. Note the number of 
waves whose peak magnitude exceeds 2

102
−×  .The increase from 2 to 5 waves is significant 

but in a field of 30 possible waves implies that things are still quite acceptable.   

3.1 Vector Compression 

We now discuss a special version of the second direction which turns out to be a method for 
compressing data. 

You may note that symmetry introduces a degree of redundancy, that is, one half of 

the data is the same as the other in 
+>
x  and that the second half of 

−>
x  is the negative of the 

other. We can exploit this redundancy by removing the last (or first) half of the data. This is 

another ‘symmetry breaking’. If we repeatedly ‘break symmetry’ for 
+>
x  and 

−>
x  we compress 

the data to two values. The symmetric operator
ψ+>
x

ψ+>
x

ψ+>
x

ψ+>
x ∑

−

=
⇒

1

0

n

i
i

xL  is the sum of 

numbers in the dataset. The anti-symmetric operator 
ψ−>
x

ψ−>
x

ψ−>
x

ψ−>
x

i

n

i

i
x∑

−

=
−⇒

1

0

1L  is the anti-

sum of numbers in the dataset for datasets of length n
2 . The more general algorithm which 

includes all length datasets is more complex and not included here.  This is a new statistic. 
The sum is a time invariant measure of the data as long as each element in the dataset is 
counted once. The anti-sum is not time invariant. The anti-sum is dependent on the order of 
the data. This number pair (sum, anti-sum) provides us with a state space instance for a 
dataset. 

3.2 Vector Expansion 

Note that so far we have decomposed one vector into two vectors. It is possible to break 

symmetry by ‘joining’ the two vectors
+>
x ,

−>
x  to form a new vector 

ψ+>
x =

−>+>

ii

xx ,  for 

1...2,1,0 −== nmi  that is now length nn 2=′ . This is a form of data expansion. 
There are obviously many possibilities contained in all the above vector operations 

including the possibilities of vector normal products that lead to higher order filters. 

4. SYMMETRY OF MATRICES 

Up to this point we have only discussed issues to do with a vector 
>
x .We will now proceed to 

outline the process of creating an invariant matrix from a vector
>
x  and subsequent operations 

on that matrix that yield new information. 

Initially we state that this invariant matrix form is a Ring Matrix 
0>
X where o indicates the 

Ring form. For simplicity we will discuss the dataset 321 ,, xxxx =
>

. Note that all datasets 

have a beginning and an end. If we treat the dataset as a piece of string and join the ends we 
create a loop or ring. This operation on a dataset provides a mechanism for point of view 
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invariance which allows us to form a matrix 
0>
X =

















213

132

321

xxx

xxx

xxx

from successive translations 

in a left to right sense, hence the forward arrow in
0>
X . This operation is translational 

symmetry. The reverse ring matrix is
0<
X
















=

231

312

123

xxx

xxx

xxx

. Note there is no filtering taking 

place. These matrices
0>
X , 

0<
X  are symmetric (Hermitian) [10].That is, the matrix is symmetric 

about the forward diagonal. It follows from [11] that if a matrix 
0>
X  is Hermitian then the 

eigenvalues of 
0>
X  are real. The eigenvectors of 

0>
X associated with the distinct eigenvalues are 

mutually orthogonal vectors.  
Another feature is that the sum of the elements of each row is the same as the sum of 

elements of each column. However, the anti-sum of the elements of each row taken left to 
right or right to left are not equal. Likewise the anti-sum of the elements of each column; 
taken bottom to top or top to bottom, are not equal. Furthermore, the ring matrix also defines 
the possible state space combinations. So far we have defined a ring matrix for a sequence 

321 ,, xxxx =
>

where each consecutive entry is lag =1. If we choose a lag = 2, 231 ,, xxxx =
>

 

and
0>
X
















=

312

123

231

xxx

xxx

xxx

. We can define any n n×  ring matrix from a dataset, length n , with a 

lag nl < . 
In Figures 11 and 12 we show the principal modes that are formed by multiplying the 

sorted eigenvalues (principal components) by their respective eigenvectors and display the 
frequencies in each mode for the top 100 modes of the Coal Reclaimer slew bearing. Note that 
the low frequencies are not associated with a dominant mode and that a new frequency at 110 
Hz encompasses more than one principal eigenmode. 

 
Figure11. 

>
x  Acceleration frequency, Eigen mode, RMS power at 01/05/2003. 
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Figure12. 
>
x  Acceleration frequency, Eigen mode, RMS power at 28/07/2006. 

 
 Prior to extracting eigenvalues, the data in the matrix has not been ‘corrupted’ or 
filtered. Obviously the previous symmetry (filtering) operations on vectors; or for that matter 
any other linear/non-linear type filter, can be applied and subsequent conversion to the Ring 
Matrix form is quite simple. As an example we can form the horizontal (row wise) symmetry 
(H+) and anti-symmetry (H─) on the original data after it has been placed in Ring Matrix 
form. Figures 13 and 14 are examples of this operation for the same raw data in Figures 1 and 
2. These are State-space images.Note the spreading out effect from the early time to the most 
recent. This is indicative of bearing wear even though the overall magnitudes have not varied 
significantly. As one would expect, this result is very similar to Figures 7 and 8. 

 
Figure13.

+>oH
X vs.

−>oH
X Accel’n space at 01/05/2003. Figure14.

+>oH
X vs.

−>oH
X Accel’n space at 28/07/2006. 

              

This could also be done for the vertical (column wise) V+, V─ Ring Matrix. The 
++> VoH

X  Ring 
Matrix is a ‘super’ symmetric Ring Matrix. The Ring Matrix is not limited to two dimensions. 
Higher Tensor forms are possible via recursion.  
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6. CONCLUSIONS 

The Coal Reclaimer slew bearing is still quite healthy although showing signs of wear. There 
appear to be no characteristic bearing defects dominating in the signal. 

It is clear that symmetry operators are fundamental to all data and that there are many 
possible forms that involve both global and/or local operations. Symmetry breaking provides 
a mechanism to perform recursive operations on symmetric/anti-symmetric transforms. All 
symmetric/anti-symmetric transforms act like non linear filters and can be characterized into 
different orders 1, 2, 3... 

The Symmetric Wave Decomposition (SWD) method appears to provide useful new 
information which may enable the determination of internal versus external faults.  

New probability state-spaces give views of the structure of the data that provide a global 
view of behavioural changes. 

The formation of a Ring Matrix, which is essentially an outcome of translation 
symmetry, provides us non-filtered ‘point of view’ invariance. The characteristic equation of 
the data can be determined via the eigenvalues of the Ring Matrix. Subsequent processing 
identifies the frequencies and power contained in each fundamental mode which can be 
displayed. 

Symmetry operations allow us to extract pattern from any sequence. Symmetry suggests 
that there is a whole field of statistics based on the anti-sum waiting to be discovered. 
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