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Abstract 
 
Vibrating patterns of distributed oscillating structures, subjected to rotation, also turn in the 
direction of inertial revolution but with different angular rates, which depend on the geometry 
of the structures, the number of modes, etc. This effect, found by G. Bryan in 1890, has 
numerous applications in navigational instruments such as cylindrical rotational sensors. This 
effect is also important in astrophysics and seismology. In the present paper we consider the 
main principles of the theory of gyroscopic effects in distributed structures. The model of a 
thick vibrating cylinder filled with a fluid and subjected to inertial rotation is analyzed. The 
dynamics of the cylinder is considered in terms of linear elasticity and the fluid is supposed to 
be ideal and inviscid, but fully involved in the rotation. It is presumed that the angular rate of 
inertial rotation is constant and has axial orientation. It is also assumed that the angular rate is 
much smaller than the lowest eigenvalue of the system and hence the centrifugal effects, 
proportional to square of the angular rate, are neglected. The influence of the following on 
Bryan's factor are investigated: the non-axisymmetric modes of the system, the eigenvalues 
for a fixed mode, the mass density of the fluid, the modulus of elasticity, the bulk modulus, 
Poisson ratio, the thickness and inner radius of the cylinder. It is shown that the difference 
between rotational angular rates of the system and its vibrating patterns is substantial for 
lower eigenvalues and circumferential wave numbers. 

1. INTRODUCTION  

The device used in space shuttles to measure inertial rotation in space is based on United 
States of America patent number 4,951,508 dated August 28, 1990. This device makes use of 
the so-called Bryan's effect according to which vibrating patterns in oscillating structures 
move in the direction of the inertial rotation, but at different angular rates. 
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 Bryan [1] initially investigated the sound produced by a wineglass. He struck the glass 
to get a continuous sound and then rotated it slowly about its stem. He heard beats, which, 
according to him, showed that nodes revolve at an angular rate different from that of the shell. 
He then attempted to quantify this difference in angular rate by a quantity known as Bryan's 
factor. Faraday [2], Spurr [3] and Apfel [4] discussed similar observations, but in less detail. 
 In this work the dynamics of a fluid-filled cylinder is investigated. The influence of the 
mass density of the fluid, the modulus of elasticity, the bulk modulus, Poisson's ratio, and the 
inner radius and thickness of the cylinder is considered. 
 

2. THE MODEL  
 
Consider an isotropic hollow cylindrical shell consisting of a solid substance subjected to 
inertial rotation about its axis as shown in Figure 1. The cylinder is filled with an inviscid, 
compressible fluid.  
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Figure 1. The fluid-filled cylinder  

 
The angular rate of rotation of the fluid and of the cylinder coincides. In order to find the 

eigenvalues and eigenfunctions, the angular rotation of the system is initially disregarded. 
Thereafter perturbations, which are stipulated by an inertial rotation of the system about the 
cylinder axis, are considered. The angular rate Ω  of inertial rotation is assumed to be 
substantially less than the first eigenvalue of the cylinder-and-fluid system so that terms 
proportional to 2Ω  may be disregarded, that is, centrifugal forces are neglected. 

The reference frame Oxyz is fixed in space and zyxO ˆˆˆ  is rotated with constant angular 
rate Ω  relative to an inertial space (Fig. 1). The cylinder has inner radius a and outer radius b. 
The variables r and θ  are radius and polar angle respectively. The outer boundary of the 
cylinder, at br = , is assumed to be free of loads. Let the tangential displacement of the 
cylinder and fluid be ),,( truu θ= and ),,( truu θ=  respectively. The radial displacements are 

),,( trww θ=  and ),,( trww θ= respectively, as shown in Figure 1. Assume that no axial 
displacement occurs. Damping is neglected since it assumed to be so small that it does not 
substantially affect the motion. 
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3. BASIC FORMULAS 
 
Let ρ  and ρ  respectively represent the mass densities of the cylinder and the fluid. The 
Lame constants λ  and µ  are given by 
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where E is the modulus of elasticity and ν  is Poisson's ratio. The bulk modulus of the fluid is 
represented by η . 

Based on Hooke's law for isotropic cylinders, the Lagrangian for the system defined as 
the difference between kinetic energy and strain energy, and Hamilton's principle [5], the 
following equations and boundary conditions describe the system mathematically.  

For the fluid, 
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where the derivatives have the usual meaning. For the cylinder, 
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At the inner wall of the cylinder, ar = , 
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At the outer wall, br = , 
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Implementation of the changes of variables 
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in Equations (1) – (3) leads, for the fluid, to 
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with steady state solution  
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where Jm is the first order Bessel function, ω  the eigenvalues which will be determined and 
a1 is a constant. For the cylinder,  
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where ρµλ /)( 21 +=c  and ρµ /=2c . The solutions are, with Ym the second order 

Bessel function, 
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Substituting Equations (4) – (6) in Equations (1) – (3) yields 
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where m is a positive integer representing the modal number. 
 To solve for ω , the eigenvalues of the system, MathcadTM was used to solve the 
characteristic equation 
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where bij, i,j = 1, 2, 3, 4, 5 are determined by the coefficients of ai in Equations (7) – (9). To 
determine the corresponding eigenfunctions, set 11 =a  and solve 
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4. BRYAN'S EFFECT AND BRYAN'S FACTOR 
 
Assume that the system is rotating slowly in an anticlockwise direction about the vertical axis 
with a constant angular rate of Ω , as indicated in Figure 1. Assume Ω  is much smaller than 
the first eigenvalue so that terms in 2Ω  may be neglected. 

Suppose the solutions of the equations of motion for the mth mode of vibration for the 
fluid are 
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where )(tSS mn=  and )(tCC mn=  are some functions of time, and )(rWmn  and )(rU mn  are 

eigenfunctions. The kinetic energy may then be written as 
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Substitution of the first equation in (10) and its derivatives in the Lagarnge-Euler equations of 
motion for the vibration yields 
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where 02

2 IIB /=ω  and I2 is a constant determined by the eigenfunctions in the previous 

section. Bryan's factor is given by 01 IIB /=η  with 10 ≤≤ Bη . Combining the equations in 

(11), 
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Introduce a new complex variable iSCRtR +==)( , then Equation (12) becomes 
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Change the variable tietQtRQR α)()(: =֏  where α  is a constant to be determined. 
Substitution of R and its derivatives in Equation (13) yields 
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The term with Qɺ  in Equation (14) will be eliminated if Bηα Ω= . For this value of α , 
222 2 BBB ωαηαω ≈−Ω+  since terms in 2Ω  are neglected. Equation (14) then simplifies to 

02 ≈+ QQ Bωɺɺ . This equation describes the motion of a harmonic oscillator in a reference 

frame rotating with an angular velocity BηΩ=Ω̂  relative to the reference frame .ˆˆˆ zyxO  The 

transformation tietQtR α)()( =  thus fixed the vibrating pattern in a reference frame rotating 

with an angular rate Ω̂  relative to zyxO ˆˆˆ . But this reference frame is rotating with an angular 
rate of Ω  relative to the fixed reference frame Oxyz in Figure 1. An observer in the fixed 
reference frame thus sees the vibrating pattern rotating with angular rate Ω+=Ω )( Bη1

⌣

. 
 Following the same reasoning for the whole system, it is found that Bryan's factor of the 
first order for the system is given by 
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Since Bη  depends on the value of m, Bryan's factor of the second order is defined as 
 

m
B Bη=  

 
and is calculated in the next session. 
 

5. RESULTS 
 
The eigenvalues for non-axisymmetric nodes are considered in the audible frequency range, 
that is, 20 Hz to 30 kHz. Initially the following geometrical and physical parameters were 
used: the radii are 20=a mm and 25=b mm, the bulk modulus is 910252 ×= .η N/m2, the 

mass densities of the fluid and the liquid are 310=ρ kg/m3 and 31072 ×= .ρ kg/m3 

respectively, the Lame constants are 10107611 ×= .λ N/m2 and 10104193 ×= .µ kg/m2. 

Young's modulus is 10108×=E  and Poisson's ratio is 170.=ν . Hence, 31051 ×= .c m/s, 
3

1 106435 ×= .c m/s and 3
2 105583 ×= .c m/s. 

In Table 1 it can be seen that B gets closer to 0 for increasing values of m. In the rest of 
the investigation m = 4 was used. Table 2 shows the influence of the eigenvalues for a fixed 
mode, m = 4, on B. For the results in Table 3 the outer radius was fixed and the inner radius 
was changed, that is, the thickness of the shell changed. To generate the data in Table 4, the 
thickness if the shell remained the same, while the inner radius of the shell increased. Tables 
5, 6, 7 and 8 reflects the influence of the Poisson ratio, the bulk modulus, Young's modulus 
and the mass density of the fluid respectively. 

 
Table 1. Bryan's factor, B, for the first eigenvalue of each value of m 

 
m 2 3 4 5 6 8 
B -0.432 -0.236 -0.151 -0.108 -0.086 -0.068 
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Table 2. B for changing eigenvalues (f) 
 

f (Hz) 3108452 ×.  3109516 ×.  4101231 ×.  4105101 ×.  4105961 ×.  4109131 ×.  
B -0.151 -0.120 -0.035 -0.020 0.096 -0.004 

 
 
 

Table 3. The influence of the thickness (mm) of the shell on B 
 

Thickness  1 5 10 15 
B -0.207 -0.151 -0.132 -0.110 

 
 

Table 4. The influence of the inner radius (mm) of the shell on B 
 

a  100 200 300 400 
B -0.137 -0.151 -0.162 -0.170 

 
 

Table 5. The influence of the Poisson ratio on B 
 

ν  0.05 0.10 0.17 0.2 0.4 
B -0.151 -0.151 -0.151 -0.150 -0.148 

 
 

Table 6. The influence of the bulk modulus on B 
 

)( 910×η  1.00 2.00 2.25 2.50 3.00 

B -0.163 -0.152 -0.151 -0.150 -0.148 
 
 

Table 7. The influence of Young's modulus on B 
 

)( 1010×E  6 7 8 9 10 

B -0.148 -0.149 -0.151 -0.152 -0.153 
 
 

Table 8. The influence of the fluid's mass density on B 
 

)( 310×ρ  0.8 1.0 1.2 1.5 2.0 

B -0.143 -0.151 -0.157 -0.166 -0.178 
 
 

6. CONCLUSIONS 
 
From Tables 1 and 2 it is seen that both the mode numbers m and the eigenvalues contribute 
towards Bryan's factor. The influence of both is substantial for lower values. Note the positive 
value of the fifth eigenvalue in Table 2. This implies that the vibrating pattern will precede the 
rotating body for this eigenvalue, while the pattern will lag for the other eigenvalues. 
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 The thicker the shell, the smaller is the Bryan's factor, as seen in Table 3. This implies 
that Bryan's effect is less for thicker shells. On the other hand, the bigger the inner radius of 
the shell, the bigger Bryan's effect as is seen in Table 4. 
 Bigger values of both the Poisson ratio (Table 5) and the bulk modulus (Table 6) lead to 
Bryan's factors closer to 0. Increased values of Young's modulus (Table 7) and the mass 
density of the fluid (Table 8) lead to more pronounced Bryan's effects. 
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