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Abstract

Vibrating patterns of distributed oscillating sttuies, subjected to rotation, also turn in the
direction of inertial revolution but with differemingular rates, which depend on the geometry
of the structures, the number of modes, etc. THice found by G. Bryan in 1890, has
numerous applications in navigational instrumentshsas cylindrical rotational sensors. This
effect is also important in astrophysics and selegyo In the present paper we consider the
main principles of the theory of gyroscopic effectsdistributed structures. The model of a
thick vibrating cylinder filled with a fluid and bjected to inertial rotation is analyzed. The
dynamics of the cylinder is considered in termbradar elasticity and the fluid is supposed to
be ideal and inviscid, but fully involved in thetatdon. It is presumed that the angular rate of
inertial rotation is constant and has axial origata It is also assumed that the angular rate is
much smaller than the lowest eigenvalue of theesysand hence the centrifugal effects,
proportional to square of the angular rate, ardemégd. The influence of the following on
Bryan's factor are investigated: the non-axisymimetrodes of the system, the eigenvalues
for a fixed mode, the mass density of the fluid thodulus of elasticity, the bulk modulus,
Poisson ratio, the thickness and inner radius efaylinder. It is shown that the difference
between rotational angular rates of the system indibrating patterns is substantial for
lower eigenvalues and circumferential wave numbers.

1. INTRODUCTION

The device used in space shuttles to measureaheotation in space is based on United
States of America patent number 4,951,508 datedugtu@f3, 1990. This device makes use of
the so-called Bryan's effect according to whichrailmg patterns in oscillating structures
move in the direction of the inertial rotation, laatdifferent angular rates.
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Bryan [1] initially investigated the sound prodddey a wineglass. He struck the glass
to get a continuous sound and then rotated it si@lbut its stem. He heard beats, which,
according to him, showed that nodes revolve atrgular rate different from that of the shell.
He then attempted to quantify this difference igwar rate by a quantity known as Bryan's
factor. Faraday [2], Spurr [3] and Apfel [4] dissed similar observations, but in less detail.

In this work the dynamics of a fluid-filled cylied is investigated. The influence of the
mass density of the fluid, the modulus of elastidihe bulk modulus, Poisson's ratio, and the
inner radius and thickness of the cylinder is coesd.

2. THE MODEL

Consider an isotropic hollow cylindrical shell catsg of a solid substance subjected to
inertial rotation about its axis as shown in FigareThe cylinder is filled with an inviscid,
compressible fluid.

2(2)

|~ u(u)
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Figure 1. The fluid-filled cylinder

The angular rate of rotation of the fluid and d# ttylinder coincides. In order to find the
eigenvalues and eigenfunctions, the angular ratatibthe system is initially disregarded.
Thereafter perturbations, which are stipulated tyrertial rotation of the system about the
cylinder axis, are considered. The angular r&eof inertial rotation is assumed to be
substantially less than the first eigenvalue of tyénder-and-fluid system so that terms

proportional toQ? may be disregarded, that is, centrifugal forcesnaglected.

The reference fram©xyz is fixed in space an®Xxyz is rotated with constant angular
rate Q relative to an inertial space (Fig. 1). The cyéintias inner radius and outer radiub.
The variables and 8 are radius and polar angle respectively. The obtemdary of the
cylinder, atr =b, is assumed to be free of loads. Let the tandedisplacement of the
cylinder and fluid beu = u(r,6,t)and u =u(r,6,t) respectively. The radial displacements are
w=w(r,6,t) and w =Ww(r,6,t)respectively, as shown in Figure 1. Assume thatarial
displacement occurs. Damping is neglected sinesstimed to be so small that it does not
substantially affect the motion.
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3. BASIC FORMULAS

Let p and p respectively represent the mass densities of ytieder and the fluid. The
Lame constantd and i are given by

A= L and y =
1+v)1-2v) 21+v)

whereE is the modulus of elasticity and is Poisson's ratio. The bulk modulus of the flisid
represented by .

Based on Hooke's law for isotropic cylinders, tlagiangian for the system defined as
the difference between kinetic energy and straiargyn and Hamilton's principle [5], the
following equations and boundary conditions desctlie system mathematically.

For the fluid,
ﬁﬁ—/]{izugg +£V_Vr9 +i2v_v} =0 and,ﬁ\'/_\'/—n{v_vrr +EW-%W+EUW _izﬁﬁil =0 ()
r r r r r r r

where the derivatives have the usual meaning.Heocylinder,

pi=(J +2u)[wn +Lu —%w}—u{%wﬁ}—u +u){%um}+u +3u)[ri2ug 0 @

pu—u[ur, +2y —r%u}—u+2u)[r%ugg}—u+u>[%w,g}—u+3m[r%wg =0, @

At the inner wall of the cylindem, = a,
_ 1 1 1
W-w=0 rz{wr +;(w+ug>}—u + 20w —A{;(ww)} -0 u[ur = —u)} =0
At the outer wall,r =b,
1 1 1
—,U|:Ur +F(W9 _u):l = O, (/1 + 2/'1)Wr +/]|:?(e+u9):| = 01 /,I|:Ur +?(W9 _u):l =0.

Implementation of the changes of variables

OX(r6t) L _10X(r,61) | 096y 10W(r,6Y | _ 199,61 _dw(r,6)
o ' r 06 B r r

w= , ,

or r 06 r 00 or

in Equations (1) — (3) leads, for the fluid, to
X =c?0%X, c=4nlp

with steady state solution
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X(r,H,t):alJm(%)r)cos(m9+ at) 4)

whereJy, is the first order Bessel function, the eigenvalues which will be determined and
a, is a constant. For the cylinder,

d-c’0’d=0, Y-c20’°¥=0

wherec, =./(A+2u)/ p andc, =,/ i/ p . The solutions are, witli, the second order
Bessel function,

d(r,0t) = asz(CQrJ+a3Ym[é—drﬂcos(m0+ax), (5)
W(r,6,t) = aAJm[CﬂrJ +a5Ym[C£rHsin(me+ at). (6)

Substituting Equations (4) — (6) in Equations (1B)-yields

w = a{\]m'(%)rﬂcos(m6+ ), U= a{—Tme(%)rj— sin(m@+at)  (7)

W:a{\]m'(grﬂ+a{m'(ﬂrj +a{m\]m(£rﬂ+a{mm(ﬂrj cos(mé+at) (8)

c, ¢ ) r C, r C,

u=a{—m\lr{c—drﬂ+a3{—mYm Qrﬂ+a4{—Jm'[£rH+a5{—Ym'[£rHsin(mH+ai)
r (o} r C, c, c,

9)

wherem s a positive integer representing the modal numbe
To solve for &, the eigenvalues of the system, MatHtadvas used to solve the
characteristic equation

by (w) by,(w) by(w) by(w) big(w)
b, (@) by(w) by(w) by(w) by(w)
0 by, (@) byy(@w) byy(w) by(w) =0
0 by(w) by(w) byu(w) b(w)
0 b,(@w) bgy(w) by(w) byy(w)

whereby, i,j = 1, 2, 3, 4, 5 are determined by the coefficiaitg; in Equations (7) — (9). To
determine the corresponding eigenfunctionsgset and solve
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bzz(w) bzz(w) bzz(w) bzz(w) a, _b12(a))

by(w) Byy(@) byy(w) by(w)|a, | _ 0
0,,(@) by(@) by(e) by(a)|a,| | O
b,y (@) by (W) by(w) by(w)] as 0

4. BRYAN'S EFFECT AND BRYAN'S FACTOR
Assume that the system is rotating slowly in ancéotkwise direction about the vertical axis

with a constant angular rate &, as indicated in Figure 1. Assun@e is much smaller than

the first eigenvalue so that terms@f may be neglected.
Suppose the solutions of the equations of motiorttfe m" mode of vibration for the
fluid are

W, (r,6,t) =W, (r)[C,,,(t)cosmE + S, (t)sinmé],
U, (r.6t) =0, ()-S,,(t)cosmd+C,,(t)sinmd]

where S=S,, (t) and C =C,,(t) are some functions of time, aml, (r) andU,(r) are
eigenfunctions. The kinetic energy may then betemitis

T =271,(C% + $%) - Q1,(C$-C9)|, 1, :gj:(Uz +W2yrdr, 1, =p[ WOrdr .
(10)

Substitution of the first equation in (10) anddevivatives in the Lagarnge-Euler equations of
motion for the vibration yields

S-2017,C+afS=0, C+2Qn,S+wiC=0 (12)

where o =1,/1, andl, is a constant determined by the eigenfunctionsh@ previous
section. Bryan's factor is given by, =1, /1, with Os|nB| <1. Combining the equations in
(11),

(C+iS)-2Qn,i(C+iS)+wf(C+iS)=0. (12)
Introduce a new complex variabRt) = R=C +iS, then Equation (12) becomes
R-2i7,QR+fR=0. (13)

Change the variableR— Q: R(t) = Q(t)¢'" where a is a constant to be determined.
Substitution oR and its derivatives in Equation (13) yields

Q+2i(a - Qny)Q+(eh +2aQn,; —a*)Q=0. (14)
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The term withQ in Equation (14) will be eliminated itr =Qn,. For this value ofa,

wh +2aQn, —a® =« since terms inQ” are neglected. Equation (14) then simplifies to
Q+w§Q=O. This equation describes the motion of a harmascillator in a reference
frame rotating with an angular veloci@ =Qn, relative to the reference fran@kyz. The
transformationR(t) = Q(t)e'™ thus fixed the vibrating pattern in a referencanfe rotating

AAn

with an angular rat€) relative toOXyz . But this reference frame is rotating with an dagu
rate of Q relative to the fixed reference fran@xyz in Figure 1. An observer in the fixed
reference frame thus sees the vibrating patteatingtwith angular rat€ = (1+ ns)Q.

Following the same reasoning for the whole sysiiem,found that Bryan's factor of the
first order for the system is given by

_1,(fluid) + 1 (shel)
® 7 1, (fluid) + 1 ,(shel)

Sincer, depends on the value wf Bryan's factor of the second order is defined as

B= ,7_5
m
and is calculated in the next session.
5. RESULTS

The eigenvalues for non-axisymmetric nodes areidered in the audible frequency range,
that is, 20 Hz to 30 kHz. Initially the followingegmetrical and physical parameters were

used: the radii ar@ =20mm andb =25mm, the bulk modulus ig = 2.25x10° N/m?, the
mass densities of the fluid and the liquid a@=10°kg/m® and p =2.7x10°kg/m’
respectively, the Lame constants ark=1.761x10"°N/m? and u =3.419x10"°kg/n.

Young's modulus isE =8x10" and Poisson's ratio i =0.17. Hence,c=1.5x10°m/s,
¢, =5.643x10°m/s andc, = 3.558x10°m/s.

In Table 1 it can be seen tHagets closer to 0 for increasing valuesmfin the rest of
the investigatiorm = 4 was used. Table 2 shows the influence of ipengalues for a fixed
mode,m = 4, onB. For the results in Table 3 the outer radius viesdfand the inner radius
was changed, that is, the thickness of the shalhgbéd. To generate the data in Table 4, the
thickness if the shell remained the same, whileiither radius of the shell increased. Tables
5, 6, 7 and 8 reflects the influence of the Poisstio, the bulk modulus, Young's modulus
and the mass density of the fluid respectively.

Table 1. Bryan's factoB, for the firsteigenvalueof each value ofn

2 3 4 5 6 8
-0.432| -0.236 -0.151 -0.108-0.086| -0.068

m
B
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Table 2.B for changingeigenvaluegf)

f(Hz) | 2.845x10° | 6.951x10° | 1.123x10* | 1.510x10* | 1.596x10" | 1.913x10"
B -0.151 -0.120 -0.035 -0.020 0.096 -0.004

Table 3. The influence of the thickness (mm) ofghell onB

Thickness 1 5 10 15
B -0.207| -0.151 -0.132 -0.110

Table 4. The influence of the inner radius (mmhef shell orB

a 100 200 300 400
B -0.137| -0.151 -0.162 -0.170

Table 5. The influence of the Poisson raticBon

Vv 0.05 0.10 0.17 0.2 0.4
B -0.151] -0.151 -0.15]1 -0.150-0.148

Table 6. The influence of the bulk modulus®n

n(x10°) | 1.00 2.00 2.25 2.50 3.0d
B -0.163| -0.152 -0.15]1 -0.150-0.148

Table 7. The influence of Young's modulusB®n

E (x10%) 6 7 8 9 10
B -0.148| -0.149 -0.151 -0.152-0.153

Table 8. The influence of the fluid's mass density

o(x10°) | 08 | L0 | 12| 15| 20
B |-0.143] -0.151 -0.157 -0.166:0.178

6. CONCLUSIONS

From Tables 1 and 2 it is seen that both the mantebersm and the eigenvalues contribute
towards Bryan's factor. The influence of both ibstantial for lower values. Note the positive
value of the fifth eigenvalue in Table 2. This ineglthat the vibrating pattern will precede the
rotating body for this eigenvalue, while the patiteisill lag for the other eigenvalues.
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The thicker the shell, the smaller is the Brydatdor, as seen in Table 3. This implies
that Bryan's effect is less for thicker shells. {Ba other hand, the bigger the inner radius of
the shell, the bigger Bryan's effect as is se€rainle 4.

Bigger values of both the Poisson ratio (Tablark) the bulk modulus (Table 6) lead to
Bryan's factors closer to 0. Increased values ofings modulus (Table 7) and the mass
density of the fluid (Table 8) lead to more pronoeth Bryan's effects.
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