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Abstract 
 
“Bryan’s effect” - that is, the effect of a vibrating pattern’s precession in the direction of 
inertial rotation of a vibrating ring - was discovered by G. Bryan in 1890. This effect has 
several applications in navigational instruments, such as cylindrical, hemispherical and planar 
circular disc rotational sensors. The model of a thin circular disc vibrating in its plane and 
subjected to inertial rotation is considered. The dynamics of the disc gyroscope are considered 
in terms of linear elasticity. Two models are considered: solid discs and a composite disc 
consisting of concentric annular discs with various boundary conditions on the inner and outer 
circumferences. It is assumed that the angular rate of inertial rotation of the composite disc is 
constant and has axial orientation. It is also assumed that this angular rate is much smaller 
than the lowest eigenvalue of the composite disk. Hence any centrifugal effects and quantities 
that are proportional to the square of the angular rate are negligible. Our model is formulated 
in general terms and then compared to a formulation in terms of Novozhilov-Arnold-Warbur-
ton’s theory of thin shells. The system of equations of motion of the disc is separated and 
transformed into a pair of wave equations in polar coordinates. A solution is obtained in terms 
of Bessel and Neumann functions. Various non-axisymmetric modes of the composite disc are 
considered and the dependence of Bryan’s effect on eigenvalues, mass densities of the 
composite disc, its modulii of elasticity, Poisson ratios, outer and inner radii of the disc, and 
for various types of boundary conditions, are investigated.  

1. INTRODUCTION 

The effect of a vibrating pattern’s precession in the direction of inertial rotation of a vibrating 
ring was discovered by G. Bryan [1] in 1890. In this paper we consider the model of a thin 
circular disc vibrating in its plane and subjected to inertial rotation. The main gyroscopic 
effect of the vibrating disc can be described as follows: The angular rate of a vibration pattern 
is proportional to the inertial angular rate applied to the structure. This phenomenon, known 
as “Bryan’s effect”, depends on the particular eigenvalue involved. This effect has several 
applications in navigational instruments, such as cylindrical, hemispherical and planar circular 
disc rotational sensors (see, for instance, [2]). 

Solutions to the system of equations of motion of the composite disc are derived from 
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Lagrange’s variational principle. The solutions are obtained in terms of Bessel and Neumann 
functions.  Bryan’s effect, for various eigenvalues, is investigated for various types of inner 
boundary conditions, circumferential wave numbers and Poisson ratios. 

2. GYROSCOPIC EFFECTS IN PLANE BODIES 

Let us consider a composite circular disc consisting of a number of concentric annular discs 
(Fig. 1). Suppose the composite disc is subjected to non-decaying vibrations on one of its 
natural modes.  Assume that the composite disc is rotating at a constant inertial angular rate 

 with axis of rotation the  axis.  It is assumed that Ω Oz Ω  is small compared to the lowest 
eigenvalue of the system. Hence it is possible to neglect any centrifugal effects as well as 
( )2O Ω  in calculations involving any eigenvalue.  

 

z
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Figure 1. Coordinate system for concentric annuli 
 
Assume that  is the vector of linear displacements of an arbitrary point , belonging 

to the composite disc
( , , Tu v w) P

( )D . The normal component of displacement is assumed to be equal to 
zero ( ). Consequently, the absolute linear velocity of this point is  0w =
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where  is the distance from the centre O  to point  of the body. The kinetic energy of the 
system of annular discs is as follows: 
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Where   is the number of concentric annular discs in the system,  are the inner and 
outer radii, 

N 1,ia a−

iρ  the density and  the thickness and of the ith annulus (ih 1, 2, ,i N= … ). 
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 We express displacements ( , , )i iu u r tϕ=  and ( , , )i iv v r tϕ=  of the ith annulus of the 
system as follows: 
 

 
( ) ( ) ( ) ( ) ( ) ( ), , cos sin ;i iu r t U r C t m S t mϕ ϕ= ⎡ + ϕ ⎤⎣ ⎦  

                       ( ) ( ) ( ) ( ) ( ) ( ), , sin cosi iv r t V r C t m S t mϕ ϕ ϕ= ⎡ − ⎤⎣ ⎦                            (3) 
 

where ,  are the eigenfunctions of the system corresponding to  
eigenvalues 

( )i iU U r= ( )i iV V r=

ω , which will be calculated later, and , an integer, is the circumferential wave 
number. The nature of the functions 

m
( )C C t=  and ( )S S t=  can be determined from Eq. (4) 

below. 
 After substituting Eq. (3) into Eq. (2) we obtain an expression for the kinetic energy of 
the system . The system of equations for the mode under consideration is: ( , , , )T T C S C S= � �

 
2 ;d T T d T TC

dt C dt SC S
2Sω ω∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− = − − = −⎜ ⎟ ⎜ ⎟∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠� �     (4) 

               
or                     

 
2 22 0; 2C S C S C Sη ω η ω+ Ω + = − Ω + =�� � �� � 0         (5)         

 
where the so-called “Bryan’s factor” η  (see [3]) is given by: 
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We can interpret Bryan’s factor as follows: Let X C iS= +  ( 2 1i = − ). Then, neglecting ( )2O Ω  
terms, from Eq. (5) and considering the transformation 
  

( ) ( ) exp( )X t Y t i tη= ⋅ Ω                         (7)  
 
we arrive at the approximation . The last equation is the well-known equation of a 
harmonic oscillator with two degrees of freedom. Consequently, the vibrating pattern rotates 
with an angular rate of 

2 0Y Yω+ =��

ηΩ  (in the rotating reference frame in the direction of rotation of 
the system, if

)Oxyz
0η > , and in the opposite direction, if 0η < . 

 
 

2.1 Lagrangian of the System and Equations of Motion 
 
The eigenfunctions and eigenvalues of the system do not change with a small inertial rotation. 
Hence in this section we neglect rotation. The kinetic energy of the system is 
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and the strain (or potential) energy is (see, for instance,  [4]) 
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where iσ is the Poisson ratio of the  disc and the strains  are: thi )()(

2
)(

1 ,, iii ωεε
 

( ) ( ) ( )
1 1

1, ,i i ii i i
i i

u v vu u
r r r r

ε ε ω
ϕ ϕ

∂ ⎛ ∂ ⎞ ∂ ⎛ ∂
= = + = + −⎜ ⎟ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝

1 .iu ⎞
⎟
⎠

     (10) 

 
After substituting the expressions given in Eq. (10) into Eq. (9), the Lagrangian of the system 
is 
 

( ) ( ) ( ), , , , , , , , , , , ,r r r r ,L K u v P u v u v u v L u v u v u v u vφ ϕ φ ϕ′ ′ ′ ′ ′ ′ ′ ′= − =� � � �       (11) 
 

Hence the equations of motion are 
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In explicit form, these equations are 
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for  and .  iu u= iv v=
 Using the change of variables 
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     (14) 

 
separation of variables is obtained 
 

2 2
2 0 ; 0

1
E Gρ ρ
σ

Φ − ∇ Φ = Ψ − ∇ Ψ =
−

����     (15) 

 
where ( )2 1

EG σ= + is the  modulus of elasticity of the second order. 

 Assume that the solutions to Eq. (15) are of the form: 
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( ) ( ) ( ){ } ( )1 1, , cos ;i t

m mr t A J k r BY k r m e ωϕ ω ω ϕΦ = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 
( ) ( ) ( ){ } ( )2 2, , sin i t

m mr t C J k r DY k r m e ωϕ ω ωΨ = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ϕ                     (16) 
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= , ( )2k G

ρω ω= are the first and second wave numbers and 

 and   are Bessel and Neumann functions respectively. mJ mY
If the centre of the disc O ( 0r = ) is considered, then 0.B D= =  Eigenfunctions 

 and  in expression (3) are calculated by substituting Eq. (16) into Eq. (15). 
Then 
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2.2 Boundary conditions 
 
Let us consider an example of a hollow annular disc with inner radius  and outer 
radius  Suppose that both radii are free. In this case the boundary conditions, which are 
obtained from the Lagrangian (11), are: 

0a a=

1 .a b=
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or in explicit form: 
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; 

     (19) 
 

If, for example, the inner boundary of the disc is fixed, then the first and second boundary 
conditions in Eq. (18) and Eq. (19) must be changed to 
 

: 0;
r a r a

r a u v
= =

0= = =     (20) 
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3. EXAMPLE 
 
Consider an aluminium disc with 70E GPa= , 32700 kg

mρ = , 0.33σ = , outer boundary at 

 free and thickness 0.15r b m= = 0.01h = m (the thickness h = 0.01 m and the outer 
boundary of radius b = 0.15 m remain constant for all the examples). 
 Table 1 illustrates the dependence of Bryan’s factor (Eq. (6)) on the eigenvalues of the 
system, for a fixed circumferential wave number 2m = . 
 
 

Table 1. Eigenvalues (in Hz) and associated Bryan’s factors for free inner boundaries 
 

m = 2 a = 0.001 a = 0.005 a = 0.01 a = 0.05 a = 0.1 a = 0.14 
f 7769.6 7719.9 7565.6 4740.5 1876.1 297.9 
η -0.8699 -0.8666 -0.8565 -0.7547 -0.7753 -0.7990 

 
When the shell thickness becomes small (b a a b− << + ) the effects may be described in the 
frames of the model of thin inextensional rings (see [5] and [6]). Using this theory and our 
definition of Bryan’s factor we calculated the following values at 0.14a m= : 
 

( ) ( )
( )

22

42

1 4
298.6

32 1

m m E b a
f Hz

a bm ρπ

− −
= =

++
,  2

2 0.8
1

m
m

η = − = −
+

                (21) 

 
These values are very close to the values in Table 1. 
 Let us look at the dependence of the eigenvalues and Bryan’s factor on the circumferen-
tial wave number ( m ). Suppose that  0.05a m=  and 0.15b m= . The data for the first five 
eigenvalues and for 2,3, 4,5m =  are given in the Table 2. 
 

Table 2. Eigenvalues (in Hz) and associated Bryan’s factors for different values of m 
 

 f1, (Hz) 
η1 

f2 (Hz) 
η2 

f3  (Hz) 
η3 

f4  (Hz) 
η4 

f5  (Hz) 
η5 

m = 2 4740.5 
-0.7547 

13657.6 
0.1300 

26073.5 
0.0300 

29133.4 
0.01333 

41334.7 
0.3700 

m = 3 10149.1 
-0.5697 

18718.6 
-0.1752 

27080.0 
0.1289 

36091.4 
-0.1800 

44387.6 
0.3055 

m = 4 14853.8 
-0.4627 

23960.2 
-0.2589 

30281.2 
0.09547 

42230.9 
-0.2970 

46721.2 
0.2267 

m = 5 18740.7 
-0.3819 

29361.0 
-0.2472 

35026.7 
0.01308 

46447.6 
-0.1667 

51070.3 
-0.00521 

 
Bryan’s factors do not depend on thickness ( ), mass density (h ρ ) and modulus of elasticity 
( E ), but do depend on Poisson’s ratio (σ ) of the disc. This dependence is weak and is shown 
in Table 3 for the lowest eigenvalue of the system and 2m = .  
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Table 3. Eigenvalues (in Hz) and associated Bryan’s factors for different values of σ 
 

m = 2 σ = 0.05 σ = 0.1 σ = 0.2 σ = 0.33 σ = 0.4 σ = 0.475 
f 4927.0 4892.4 4825.9 4740.5 4696.5 4650.5 
η -0.7547 -0.7547 -0.7546 -0.7547 -0.7547 -0.7547 

 
Now suppose that the inner boundary of the disc is clamped. The results for the lowest 
eigenvalues and Bryan’s factors for 2m = are given in Table 4. 
 

Table 4. Eigenvalues (in Hz) and associated Bryan’s factors for clamped inner boundaries 
 

m = 2 a = 0.001 a = 0.005 a = 0.01 a = 0.05 a = 0.1 a = 0.14 
f 7772.709 7797.227 7872.829 10083.321 16579.695 75620.31 
η -0.87009 -0.87170 -0.87657 -0.97905 -0.36348 -0.01122 

 
 

4. CONCLUSIONS 
 

Comparing the eigenvalues and associated Bryan’s factors for various free inner boundaries, it 
was found that Bryan’s factor depends on the inner radius. Bryan’s factor increases if the 
difference between outer and inner radii of the disc decreases (in this case the inner radius 
increases).  
 According to the second and third tables, Bryan’s factor is almost independent of the 
Poisson ratio σ.  
 Comparing the eigenvalues and their associated Bryan’s factor for various clamped 
inner boundaries, it was found that Bryan’s factor decreases as the inner radius increases. 
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