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Abstract 

 

The lack of balance, which occurs in all rotating machines, could cause troublesome vibration 

if the attachments to the foundation of the machine are unsuitable.  This is particularly true for 

centrifuges, where uneven loading of the basket, for example, due to temporary irregularities 

in the feed or layers of salt sediment on the basket, may lead to particularly bad balancing.  

The aim of this investigation was to evaluate the use of rubber mounts and to predict feasible 

mount stiffness coefficients to be used.  These mounts have to produce good vibration 

isolation to protect the supporting building from dynamic forces transmitted, but must also 

limit the static and dynamic mount displacements to allow acceptable motion of the centrifuge 

assembly.  It was therefore necessary to use a six-degree of freedom mathematical model, 

implemented in computer programs to compute these static and dynamic mount 

displacements and mount forces, for 2 possible designs.  An objective function as a measure 

of vibration transmitted, was also used.  In addition, the mount system natural frequencies 

were also computed, to prevent resonance with the normal basket angular speed and also the 

forced frequency of the axial pusher mechanism. 

 

 

1.  INTRODUCTION 

 

This investigation regarding vibration isolation was done for centrifuges located at the first 

level of supporting reinforced concrete building.  A six-degree of freedom model was used.  A 

direct approach in terms of forces transmitted to the support structure is considered. 

 

 

2.  MATHEMATICAL MODEL 

 

A mount system model similar to that employed by Nel and Heyns is considered [3], [5], [6].  

Hence the centrifuge assembly (centrifuge and base plate) is idealised as a rigid body of mass 

m attached to a rigid support structure by means of an arbitrary number n of elastic mounts 



  

with arbitrary positions and orientations with respect to the centrifuge assembly global co-

ordinate system.  The origin of the fixed global co-ordinate system xyz is located at g, the 

center of gravity (c.g.) of the centrifuge assembly as shown in figure 1.  

It is assumed that the stiffness coefficient kxi, kyi, kzi in the three co-ordinate directions are 

independent of each other if the rotational stiffness of the mount is neglected.  For elastomeric 

materials, as are usually used at rubber mounts, a hysteretic damping model with a complex 

stiffness matrix is assumed here [2], [4], [5], see also figure 1, so that 
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where j = 1− , and η x, η y and η z are the mount loss factors in each of the three co-ordinate 

directions.  A transformation is required to relate the translational displacements of each 

mount to translational and rotational displacements of the centrifuge assembly c.g.  Assuming 

small centrifuge displacements, Gi is defined by 
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where ui is the translational displacement matrix at mounting point i and Ug are the centrifuge 

assembly c.g. displacements.  zyx ∆∆∆ ,,  are translational and θ∆ x, θ∆ y, θ∆ z rotational 

displacements.  With Fi vector comprising the three forces and the three moments due to 

mount i acting on the centrifuge assembly along x, y and z and about x, y and z respectively, it 

now follows that      

Fi = - [ ]ii
T
i GKG  Ug       (3) 

 

Assuming again small displacements, the rigid body equations of motion [1] is 

 

MgÜg = F     (4) 

 

with F the matrix of resultant total forces and moments on the centrifuge assembly.  The 

system mass matrix is 

Mg = 
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where m is the total centrifuge assembly mass and Ixx, Iyy and Izz are the elements of centrifuge 

assembly inertia expressed in terms of the global co-ordinate system. 

The centrifuge assembly c.g. acceleration matrix is 
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where  ,x&&∆  y&&∆ , z&&∆  are translational accelerations and xθ&&∆ , yθ&&∆ , zθ&&∆  angular accelerations. 

Adding together the effects of all the mounts of the centrifuge assembly, it follows that 

∑
=

n

i
iF

1

 = - 







∑

=

n

i
ii

T
i GKG

1

Ug     (7) 

= - KgUg 

 

where Kg is is a complex dynamic matrix which includes hysteretic loss effects at the 

centrifuge c.g.  From this and equation (4) it now follows that 

 

gM gU&&  + KgUg = Fge     (8) 

 

where Fge represents all forces and moments on the centrifuge assembly other than the mount 

reaction forces.  In order to take advantage of the frequency domain approach, Fge is assumed 

to comprise of v sinusoidal forces and moments included by dhF  with corresponding 

frequencies hω  and phase angles vhha ,...,2,1, = .  It may then be  shown that 

 

    gU  = ∑
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where  gU  and dhF  represent displacement and force phasors respectively [2]. 

    The centrifuges assembly shaking forces and moments are 

      Fge =  
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    The model may be employed to determine an objective function.  The dynamic 

displacements at each mount in the x, y and z directions are computed in the time domain.  It 

is thus possible to compute for each force component at each mount the average value of the 



  

sum of the dynamic forces at each time increment dt over the period T.  As criterion of 

vibration transmitted, an objective function is defined by 
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in which X is a vector of design variables chosen here to comprise stiffness coefficients.  It is 

now required to minimize with respect to variables X, subject to inequality constraints 

 

    w = 0)max( ≤−+ cds UUU     (12) 

 

where cU  is a vector of specified maximum acceptable mount translational displacement 

amplitudes.  The maximum dynamic translational displacement elements in dU  are in the 

same direction as the static displacement elements in sU .  These constraints also give an 

indication of acceptable centrifuge assembly motion and acceptable mount displacements. 

 

 

3.  CHARACTERISATION OF PARAMETERS 

 

The manufacturer supplied the centrifuge and base plate mass and centre of mass properties.  

These properties were used in the computation of the moments of inertia for the total 

centrifuge and base plate assembly for each global axis.  The total principal moments of 

inertia are 5272.7, 6395.1 and 7468.5 kgm
2
 corresponding to the centrifuge global x, y and z 

axes as shown in figure 1.  The total centrifuge assembly mass is 9800 kg.  The global co-

ordinates for each of the mounts and those for the basket centre were determined.  The 

centrifuge assembly is supported by 4 mounts positioned at the following global co-ordinates: 

 
Table 4.  Mount global co-ordinates [m]. 

 

Mount x y z 
1 0.55 0.8 -0.795 

2 -0.496 0.8 -0.795 

3 -0.496 -0.8 -0.795 

4 0.55 -0.8 -0.795 

 

The global co-ordinates of the basket centre are: 
 

Table 5.  Basket centre global co-ordinates [m]. 

 

xc yc zc 
-0.925 0.000 0.420 

 

The basket radius is 400 mm and the greatest possible excess mass acting on this radius is 2.3 

kg (provided by the manufacturer).  The normal running speed of the basket is 1200 rev/min. 

The stiffness coefficients of the 2 existing very soft pipe compensators used were 

neglected, because these magnitudes were regarded as very small compared to the stiffness 



  

coefficients of typical rubber mounts.  The dynamic mount stiffness coefficients of standard 

mounts available were chosen for 2 different possible designs A and B as shown in Table 6. 
 

Table 6.  Mount stiffness coefficients [kN/m]. 

 

Mount stiffness coefficients [kN/m] 
Design A 

(Resonance) 

Design B 

(Feasible) 

kx1, kx2, kx3, kx4 12000 1000 

ky1, ky2, ky3, ky4  12000 1000 

kz1, kz2, kz3, kz4 15330 4560 

 

Since mount loss factors in the range of 0.05 to 0.15 do not appreciably affect the 

dynamic behaviour, and rubber mounts normally have mount loss factors in this range, mount 

loss factor values of 0.1 were assumed for all the mounts in all 3 orthogonal directions. 

 

 

4. COMPUTER IMPLEMENTATION 

 

The mathematical model was implemented in computer programs in a MATLAB 

environment.  The magnitudes of the characteristics of the parameters described above were 

used as input data.  The centrifuge assembly shaking forces and moments were computed 

first, and then used in the computation of dynamic and static mount displacements, dynamic 

and static mount forces transmitted to the support structure through the mounts and also 

objective function values. 

 

 

5. CENTRIFUGE ASSEMBLY SHAKING FORCES AND MOMENTS 

 

The magnitudes of the parameters required for computation of the centrifuge assembly 

shaking forces and moments and mathematical equations implemented in computer programs 

were also used, to compute these forces and moments. 

Figure 2 shows this force and moment time histories for the centrifuge angular speed at 

1200 rev/min.  The frequency observed from these wave forms, corresponds to the centrifuge 

basket angular speed.  These time domain forces and moments were Fourier analysed by 

using the MATLAB fft.m function, and the Fourier coefficients at corresponding frequencies 

and phase angles were then used in the computation of the responses in the x, y and z 

directions at each mount by using the frequency domain computer program (see for example 

figure 3).  Table 7 shows the force and moment amplitudes at phase angles.  The force 

magnitude of the axial pusher mechanism was considered relatively small compared to 

centrifugal forces, and therefore neglected.  The magnitude of this very low forced frequency 

force is important, and was taken into account when the mount system natural frequencies 

were evaluated (see Table 9), to avoid resonance. 
 

Table 7.  Shaking force [N] and moment [Nm] amplitudes at  phase angles [rad]  

and angular speed of 125.46 rad/s. 

 

 Fye Fze Mxe Mye Mze 

Amplitudes [N] and [Nm] 1452.8 1452.8 6101.8 1343.8 1343.8 

Phase angle [rad] 0 -1.5708 0 1.5708 -3.1416 

 

 



  

6. RESULTS AND EVALUATION 

 

As criterion or measure of vibration transmitted to the support structure, the objective 

function (equation 11) was used.  This single objective function value was then computed for 

each of the 2 different designs A and B and also a rigid mounted system design, as shown in 

Table 8 for a basket speed at 1200 rev/min.  Large objective function values indicate bad 

vibration isolation, and lower objective function values improved vibration isolation [5], [6]. 
 

Table 8.  Objective function [kN] at 1200 rev/min. 

 

 Design A 

(Resonance) 

Design B 

(Feasible) 

Rigid design 

 

Objective function ψ [kN] 1320.8 47.01 570.03 

 

By using the MATLAB eig.m function, the eigenvalues and eigenvectors were also computed 

for the 2 different designs A and B.  Table 9 shows these natural frequencies and mode 

shapes.  The stiffness coefficients used for designs A and B are shown in Table 6.  These 

natural frequencies are important in order to avoid resonance with the basket normal angular 

speed (20 Hz), but also with the axial pusher mechanism force frequency (1 to 1.25 Hz). 
 

Table 9.  Natural frequencies [Hz] and corresponding mode shapes. 

 

 Natural frequencies [Hz] and mode shapes 
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7. CONCLUSIONS 

 

The use of the very low stiffness coefficients renders the best vibration isolation, but has the 

largest static mount displacements.  The use of very low stiffness coefficients also results in 

low system natural frequencies, which could easily correspond to the pusher mechanism force 

frequency (1 to 1.25 Hz), thus resonance.  The use of very low stiffness coefficients also 

results in unacceptable centrifuge assembly motion, thus large mount dynamic displacements. 

Design A with the moderately high stiffness coefficients renders the poorest vibration 

isolation (see Table 8 for comparison of objective function magnitudes), but also has smaller 

static mount displacements compared to design B, but results in the largest dynamic mount 

displacements.  This vibration isolation is unacceptable.  The use of higher stiffness 

coefficients in general tends to create natural frequencies which could easily correspond, or be 

near to the centrifuge basket operation speed, see also Table 9, which is the case for design A.  

When one of the mount system natural frequencies corresponds to the forced basket 

frequency, then resonance takes place, which is undesirable and dangerous and could lead to 

failures and mount durability problems.  The objective function used has the largest values 

when resonance takes place (see Tables 8 and 9), which indicates that its use is effective for 

the measure of vibration transmitted. 



  

Design B renders the best compromise between vibration isolation and acceptable mount 

displacements.  The natural frequencies of design B are also far away enough from the 

basket’s normal operational speed, and also the forced frequency of the pusher mechanism 

(see Table 9).  The vibration isolation obtained for design B is also significantly better 

compared to a design where mount stiffness coefficients were chosen to represent a centrifuge 

which is rigidly attached (see Table 8 for comparison of objective function magnitudes). 
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