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Abstract

The purpose of this paper is to investigate the vibration of a vibratory gyroscope with imperfections. A
linear model due to imperfections of material or manufacturing tolerance of a vibratory gyroscope is
established. The operations of vibratory gyroscopes without or with imperfections are described under
free vibration. Effects of the imperfections in terms of damping, gyroscopic, stiffness and circulation in
the governing equations are analysed with multiple time scale method. Effects of the resulting
angular frequency variation only and anisoelasticity are investigated via the variation of the
elliptical orbit of a reference point on the element relative to a coordinate system fixed on the

gyro.

1. INTRODUCTION

Vibration gyroscope based on the modal vibration pattern of the ring or the hemispherical shell
moves when the shell is rotated about its axis and this movement provides a measure of the
applied rate of turn. Hemispherical resonator gyroscope excited with electrostatic field is not
only expensive and hard to fabricate. We are developing a new type of hemispherical resonator
gyroscope which is excited with discrete piezoceramic actuation and sensing elements bonded
on the outer surface and close to the rim of the shell. A linear error model due to imperfections
of material or manufacturing tolerance of the shell in terms of damping, gyroscopic, stiffness
and circulatory was established [1]. The behaviour of the resulting angular frequency varying
only and anisoelasticity are investigated via the variation of the elliptical orbit of a reference
point on the element relative to a coordinate system fixed on the gyro.

2. IDEAL VIBRATORY GYROSCOPE

Governing equations for a vibratory gyroscope can be written in a general form as

X+’ = 2GQy, J+a’y = —-2GQX. 1)
where x and y represent a set of orthogonal general coordinates of a point on the longitudinal
axis of the vibrating member measured in a plane fixed in the gyro and normal to the axis, ® is

the radial frequency of the vibratory gyroscope, Q2(<<w) is the rotating speed of the gyro, and G
is the sensing coefficient. Equation (3) is normalized with
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t = ot d” :d—2 0-2_.o x(t) = X (1), y(t) =Y (1) (2)
- oMt dt? T w ’ =

to obtain

X + X =2sGQY, Y +Y =-2:GQ7X, (3)

where ¢ is a small parameter in perturbation method and w=1.
2.1 Elliptical orbit

For non-rotating case; ®=0, the general solution of Eq. (3) is given by

X (1) = Acosgcos(t +%) — Bsingsin(t +.9), @

Y (t) = Asingcos(t +9) + Bcosesin(t +9).

The motion of the point (X,Y) is an ellipse in the X-Y plane, as shown in Figure 2. Parameters

A, B, ¢, 9 are constants that depend on the initial conditions. Parameters A, B, ¢ define the
shape and orientation of the ellipse, and ¢ the orbital angle.

Figure 2 Elliptical orbit

The normalized general energy E\c and angular momentum are Ay given by
ENGz%(X2+Y2+X2+Y'2), Anc = XY — XY (5)
and

Enc :%(AZ +B?), Aw=AB.

The motion of the point (X,Y) is a straight line(B=0) when the angular momentum is zero.

2.2 Angular velocity sensing

For non-zero angular velocity, a perturbation technique based on the method of two time scales
is used to solve the governing equation [3]. The vibration solution of an ideal vibratory gyro is

X =2(r, cos(eGQt) +r1,sin(eGQ 1)) cos t +2(—r, cos(eGQt) —r,sin(eGQt)) + O(e)sin t,
Y =2(r,cos(eGQt) -1, sin(eGQ 1)) cos t +2(—r, cos(¢GQ ) +1,sin(eGQ1)) + O(e)sin t.
In form of the elliptical orbit general solution we have (6)
X =X;c08T,+ X sinT,, Y =Y,cosT,+YsinT,. (7)
Xc = Acosgpcosd—Bsingsing, Xg =—-Acosgsind—Bsingcosd, @®)
Y. = Asingpcos 3+ Bcosgsing, Y, =—Asingsin g+ Bcosgcosd.

The behaviour of the orbit parameters is investigated by differentiating Eq. (8) to obtain
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A =X, cospcosd— X cospsind+Y, sinpcosd-Y, singsin g,

B’ =-X. singsin 9— X, sinpcos $+Y, cosgpsin 9+Y, cospcosd,

o :ﬁ[xc'(—Asin @Cos 9+ Bcosgsin &)+ X, (Asin psin &+ B cos ¢ cos J)
B ©)
+Y, (Acos pcos $+ Bsin psin 9) + Y, (~Acos gsin &+ Bsin ¢ cos 9)],
9 = —ﬁ[xc'(AcowsinS— Bsinpcos$) + X, (Acos pcos 3+ Bsin psin 9)

+Y, (Asin gsin 9+ Bcos ¢ cos ) + Y, (Asin ¢ cos 3—Bcosgsin $)].
The solution of the rotating gyro represent in elliptical orbit form, we have the amplitude terms
X =23 =2(r,cos(GQT,) +1,sin(GQT,)), X, =-2b, =2(-r,cos(GQT,)-r,sin(GQT,)),
Y. =2a, = 2(r, cos(GQ'T,) - 1,sin(GQT,)), Yy =-2b, =2(-r,cos(GQT,) +r,sin(GQT,)).

Equation (10) is differentiated with respect to T, we obtain (10)
X =GQY,, X =6QY,, VY., =-GQX., Y, =-GQ'X,. (11)
The change rate of the orbit is obtained as

A =0, B'=0, 9 =-GQ, g =0. (12)

The change rate of the ¢ is proportional to the rotating speed of the gyro and G is the sensing
coefficient. The orbit of the point (X,Y) is no longer an ellipse but has a roseate appearance as
shown in Figure 2.

Figure 2 The precession of the orbit of a gyro with non-zero rotation

3. NONIDEAL VIBRATORY GYROSCOPE

A linear error model due to imperfections of materials or manufacturing tolerance of the gyro in
terms of damping c, gyroscopic g, stiffness k and circulation h in the governing equations are
written as

X+ X -2eGQY =-2¢(c. X -c,X+g.Y —g,Y +k X -k, X +hY —hY),
Y +Y +26GQX =-2¢(cY +c,Y +g X + g, X +KY +k.Y +h X +h X).
Errors are assumed relatively small and are treated through € as small perturbations. Subscripts ¢ and s
are representing symmetrical and anti-symmetrical terms, respectively. Parameters ¢s ~ €, ~ 0s ~ Ja °

ks ~ ka ~ hsand h,are assumed constants in time. Each term in the linear equation Eq. (13) can be
considered separately and then superposed. Equations of error due to the symmetric part of
damping c, on non-rotating (Q=0) gyro are

X+X=-2ec, X, Y+Y=-2¢cY. (14)

(13)
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A'=-Ac,, B'=-Bc,, ¢'=0 g =0. (15)
Equations for error due to the anti-symmetric part of damping c,, we have
X +X=2e,X, Y+Y=-2¢c). (16)

, , , A% +B%)sin2 ,  2ABsin2
A'=c,Acos2¢p, B'=-c,Bcos2¢p, ¢ __{ X —)Bz L S :fBz(Dca. (17)
Similarly, we obtain orbit change rate due to errors of stiffness ksand k, , respectively,

A =0, B'=0, @' =0, 9 =k, (18)
2 2
and A'=k_Bsin2gp, B'=—k Asin2gp, ¢ = Mk g - (A B)e0s29, g
A*-B A°—-B
Orbit change rate due to errors of gyroscopic gs and ga, respectively,

, . , . . A% +B?)cos?2 . 2ABc0s2
A :_gsASIn 2€0! B'= gsBSIn 2@! 4 :_( AZ _)BZ gogs' 4 :?Bzwgs' (20)
and A'=0, B'=0, ¢'=-9,, & =0. (21)
Orbit change rate due to errors of circulatory hs and h,, respectively,

2
—hBcos2p, B =-hAcos2p, ¢ =- Mh g (A +B )S|2n2(ph (22)
B A’ -B
and A'=-Bh, B'=-Ah, ¢'=0, 9 =0. (23)
We obtain

A 0 —-c, —-h, 0 0](A

Bl |0 +—ha —-c, 0 0||B

o' |-g, 0 0 0 0fle

9 K, 0 0 0 0|4

c,Acos2¢ — g Asin2¢ + k,Bsin2¢ + h B cos 2¢ (24)
—C,Bcos2¢ + g,Bsin2¢ —k, Asin 2¢ — h,Acos 2¢
L1 (A +B? )sm2¢) _ (A*+B)cos2¢p 2ABcosZ¢)k _2ABsin2¢p
N_B. e A’ — B? . OAN-B* * AN -PB?
2ABsin 2¢ 2AB cos2¢ ( +B?)cos2¢p (A? + B?)sin2¢
2 2 Ca + 2 2 S 2 2 k 2 h
A°-B A°-B A°-B A’ —-B

The constant terms in the RHS of Eq. (24); the gyroscopic anti-symmetric error g, changes only
¢ but not A, B and the phase angle 3, the other constant term ks changes the frequency only as
shown in Figures 3a and 3b. For zero rate input (2=0), and without ksand g, * we have :

X +X=-2¢(cX-c,X+gY -k X+hY-hY),
Y +Y =-2¢(cY +cY +g X +k,Y +h X +h X).
A perturbation technique based on the methods of two time scales is used to solved above
equations to obtain
X =exp[-(c, — )T, ](X¢y cos(T, —«T,) + Xgy sin(T, —«T,))

+exp[—(c, + )T, 1(Xp cos(T, + &T,) + X sin(T, + xT,)),
Y =exp[-(c, — )T 1(Yey cos(Ty —&T,) + Yy sin(T, —xT,))

+exp[—(c, + )T, 1(Ycp cos(T, + &T,) + Y Sin(T, + «T))).
The subscripts in Eq. (26) are: ¢ for cosine - sfor sine,  for —x > pfor+x » and

(25)

(26)
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¢ = \/—+— E2+E2>O KZ\/—%+%«/Ei2+Er220.

c=c’+g’+h?-h%*-k? E =gh +ck,.

(27)
X =[ c () I +em) +Cr —Cry [0+ (M +h)*1(Cr —Cra) —Cra —Curs
< (&% +x*)9,> +(h, +h)’] L (& +x))[9,* +(h, +h)*] ’
X :[g52+(ha+hs)2](C17/5—Czyl)—C373+C4;/4 _ [gsz+(ha+hs)2](_C171_C275)+0374+C47/3
I 1 Ng '
" (&% +x*)[9,> +(h, +h)’] " (&% +x*)[g. +(h, +h)’]
_ G =Gy tGYs —Cu s Y _ G +GYe t G G Y5
N T (&)
:_C176+C277+C37/2+C471 Y :C177+C276+Cs71_c472' (29)
- GO (&% +%)

7, =kC, —Ck,, v, = +Kx*=Cc, — Kk,
7s =+ )& (7 + &% +¢.° —K,*) =24 C .k, 1+ 0,[S (67 +x° —c,” +k.*) - 2xCk, ],
yo =, +h)IS(C* +x7 —c,” +k,*) = 2xC k] - g, [x(S° +x° +0,° k") - 20 ¢ k, ],
=P +xP+ e, +xk,  y=C9.+x(h +h), 7, =xg, —<(h, +h).
C1 ’ C2 » czand ¢4 are integral constants - determining by the initial conditions.

4
1

(29)

e
Nl

(a) - (b)
Figure 3 Orbit change due to gyroscopic error g, (a) and stiffness error ks>0 (b)
X and Y are combined with four harmonic vibrations, Eq. (26). Angular frequencies of the

vibration are varied from 1(normalized) to 1+ex and 1-gx. For free vibration, ¢, > ¢ > 0.
3.1 Effect of angular frequency varies only (x #0 » £=0)
For angular frequency varies only case, Eq. (27) becomes

E, =c’+g°+h’-h?-k?’<0. E =g.h +ck,=0.

(30)
Then we have

£ =0, k=y-(c2+9.2+h’—h?—k?)>0. (31)
This is the case of angular frequency varies only.
Substitute Eq. (30) into Eq.(27) and Eqg. (26) to obtain
X =exp(—c,T,)(Xqy cos(Ty —&T,) + X sin(T, —&T,) + Xp COS(T, + &T,) + X SiN(T, + &T,)),
Y =exp(—cT,)(Yoy cos(T, —&T,) + Yy SIN(T, —&T,) + Y €OS(T, + &T,) + Y Sin(T, + «T,)), (32)
where

Cl(K+ ka) + C3(ha — hs) _CZCa + C4gs _Clca + CSgs ) (K+ ka) B C4(ha — hs)
Xen = , Ken =

)
K K
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C,C, —C,9, —C,(x—k,)+c,(h,—h,)

c,(k-k,)-c,(h,—h)+c,c, —c

XCP: l( a) 3( aK s) 2”a 4gs’ XSP: - ,
—c,(h. +h)+c,(x—k,)+c,g. +c,C c,g.+cc. +c,(h +h)—c,(x—k

YCN — l( a s) 3( - a) ng 4 a, YSN — 1gs 3va 2( :;1( s) 4( a), (33)
Cl(ha+hs)+c3(K+ka)_ngs_C4Ca _Clgs_CSCa_CZ(ha+hs)_C4(K+ka)

Yer = . , Y = . .

X and Y are combined motion of four harmonic oscillations with amplitudes of linear
combinations of ¢; > ¢, » czand ¢4, and also of function of the coefficients of errors. For each

given initial value there are two elliptic orbits having same orientation angle correspond to
1+ex and 1-&x, as shown in Fig. 4.

4,

h {n’” (4]

(a)1-ex ¥ (b) 1+ex

Figure 4 Orbits for angular frequencies (a) 1-ex and (b) 1+ex with initial values of 1s.
For a set of given ¢; > ¢, » czand ¢4, there are two orbits of frequencies 1-ex and 1+ek with

same orbit angle 9 as that of individual ¢; > ¢, » czand ¢4 and these two orbits combine to form
the trajectory in XY plane as shown in Fig. 5.

Figure 5 Orbits with frequencies 1-ex and 1+ex and trajectories in XY plane
In Figure 5, when the orbit with angular frequency 1+ex reached the apogee A, the orbit of
1-ex is lag behind and with origin at A rather than O. The trajectory is formed by the orbits of
angular frequency 1-exwith origins at each point of the trajectories of angular frequency 1+ex .
Major axes of the orbit of angular frequencies 1-ex and1+ex are referred as the “stiff” axis and
the “soft” axis, respectively. The orientation angles of orbits of 1-ex and1+ex are given by
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Yoy COS G, + Yy SING, ) _ tan"Y( Yep COS S, + Y 8iNG,
Xy COSG, + Xg SinG, "~ On X¢p COS G, + X SiN I,
The orientation angle of the ellipse is oscillating between the stiff and the soft axes.
3.2 Effect of anisoelasticity on orbit

Anisoelasticity effect is a particular case of angular frequency changing only (x 0 > £'=0). The

stiffness matrix is written in terms of isoelasticity and anisoelasticity as

). (34)

(Dnl = tanil(

k., O -k, h,—h,
+ (35)
0 Kk, h, +h, k,
The isoelasticity effect is considered in the constant term in Eq. (26). For the anisoelasticity
c,=0, ¢,=0 g,=0. (36)
Equation (27) becomes
E, =h’-h’-k>’ E, =0. (37)
When E,<0, £=0, K =+-(h2 -h7 —k?) >0, (38)
X = X¢y €0S(T, —&T,) + Xy, Sin(T, —&T,) + Xp cOS(T, + &T,) + X Sin(T, + «T,), (40)
Y =Yg €0s(T, —&T,) +Ygy SIN(T, —&T,) + Yep COS(T, + &T,) + Ygp SIN(T, + &T,).
where x. —GErKIFGM—h) | elerk) e, h,—h)
K K
6 (x—k,)—cy(h, —h,) ¢, (x—k,)—c,(h, —h,)
XCP — a a S , Xsp — a a S ,
K K (41)
Cl(ha+hs)_c3(K_ka) Cz(ha+hs)_c4(K_ka)
Yon == v Y = ’
K K
c,(h, +h)+c,(x+k,) c,(h, +h)+c,(x+k,)
ch — a S - a , Ysp I a S - a .
(CZCS _C1C4)(K'2 + ha2 — hsz — kaz)
We have X\ Yoy = Xy Yon = > =0,
(c,c cc)(zcth2 h?-k,%) (42)
XepYop = XpYep = ——— 2 : : =0,

The oscillations of angular frequencies 1-ex and 1+ex are become a line orbits with directions

of by=(Xcn,Ycen) and by=(Xcp,Ycp), respectively, as shown in Figure 6

The incline angles of the line oscillations of angular frequencies 1-ex and 1+ex are

tang, =—(h, +h,)/(x +k,), tan g, =—(h, +h,) /(k, — ). (43)

In general, the initial values are not limit the motions on the principal axes b, and byy, the

vibration is the combination of the vibrations on the two major axes determined by the initial

values of ¢; > ¢ » czand c4as shown in Figure 8.

X (0)k, +Y (0)(h, —h,)
K

X =[X(0)cos(xT,)]cos(T,) +[ sin(xT,)]sin(T,),

(44)

Y =[Y (0) cos(xT,)]cos(T,) +[

=Y (0)k, — X (0)(h, +h,) . .
- sin(xT,)]sin(T,).

The amplitude is a slowly varying periodic function, when «T, =nz, n=0,1,2,... the orbit
becomes a line with incline angle Y/X=Y(0)/X(0). This is one of the major axes of motion, A.
when «T; increasing, the amplitudes of cosT, decreases and sinTy increases, and the orbit
becomes a line again whenT, =nz+ /2, n=0,1,2,... with incline angle
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Y _ -Y (0)ka - X (0)(ha + hs)

—= . This is also one of the major axes of motion, E. The incline

X X(O)ka +Y(O)(ha _hs)
angle of the orbit is oscillating between those two major axes.

. 111 “ + b Amplitude
i .‘\m;‘ ]l[.LlL]L: . . LA

| | | | ] [ Nt
|
| L] I I
| | | HItH | | |
VAT RN TATRTATAVRIATRIAN |
|. }| f ||'| l»' ] |¥I IR I,_.I I ¥

(@) 1l-ex (b) 1+ex
Figure 6 Orbit of angular frequencies of (a) 1-exand (b) 1+ex

“Major axis” 4 ,

. =
".

& T FR “Major axis”

Figure 8 Orbit with anisoelasticity

SUMMARY

The constitutive equations of a homogenous and anisotropic thin shell are derived in an
invariant form. Multiple time scale method is used to derive the precession of the free vibrating
shell with non-zero rotation. A reference point on the vibrating shell relative to a coordinate
system fixed on the shell supporting frame moves in an elliptical orbit with period inversely
proportional to the rotating speed of the shell. Linear error model due to imperfections of
material or manufacturing tolerance of the shell in terms of damping, gyroscopic, stiffness and
circulatory are established to derive the governing equations. The effects of the resulting
angular frequency varying only and the anisoelasticity are investigated.
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