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Abstract 
 
On the subject of remote train detection, previous work has already been made, applying 
different techniques. The system described in this paper, comprises both hardware (receiver 
circuit connected to an accelerometer) and software subsystems. The latter subsystem 
employs a technique based on vector quantization (VQ). Through a training process, two 
centroids have been derived, resulting from the application of an unsupervised learning 
algorithm (Lloyd algorithm), using a 20th-order Cepstral analysis. Each centroid represents 
one of two different classes of signals: “Silence” (or absence of a moving train) and “Moving 
train” (approaching or withdrawing). What is being presently proposed is an alternative to a 
previous representation of the centroids, in which they were derived from a 14th-order Linear 
Predictive Coding (LPC) analysis. Similarly, incoming signals coming from the receiver must 
also undergo a Cepstral analysis. The input of the software subsystem consists of samples of 
the input signal, obtained by the hardware subsystem. Sampling rate is 16,000 samples per 
second, being the samples windowed into 300ms frames, with a window displacement of 
100ms. The recognition (or classification) process is based on a distance measure to each one 
of the two centroids. The Euclidean vector distance measure was used for this purpose. 
Collected data was divided into training and classification corpora, respectively 67% and 
33%. There were considered situations in which one had trains running on the same track 
where the receiver is connected to, and trains running on neighbour tracks, being the 
vibrations transmitted through the ground to the receiver circuit. For both situations, 
classification results are presented and discussed, comparing performances between the 
Cepstrum-based and the LPC-based pattern matching processes. 

1. INTRODUCTION 

Regarding the subject of remote train detection, some previous work has already been made. 
The goal is to detect a moving train as far as possible, concerning a certain location. 
Preliminary work consisted of an active system which had transmitter and receiver circuits, 
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being addressed in [1] and [2]. The transmitter was responsible for the generation of acoustic 
pulses (and their transmission to the rail) and the receiver, responsible for the reception of the 
same pulses, but delayed. Knowing the round trip delay and the velocity of sound in the 
railway tracks, one could even estimate the distance at which the train was, when there was 
any. Unfortunately, this system was considered to be inefficient and another approach had to 
be developed. 

An evolution of this system consisted on the use of the receiver circuit only, and on the 
analysis of the vibrations signal collected from the rail [3]. These vibrations can correspond to 
the situations of idle activity or of trains running on the rails, approaching or withdrawing. On 
what concerns to train vibrations, this system made no distinction between situations where 
there were trains moving on the same track where the receiver was listening, or alternatively, 
vibrations coming from moving trains running on neighbour tracks. The vibration’s signal 
was modelled using a Linear Predictive Coding (LPC) analysis on each data window. 
Confronting the coefficients obtained in a given window against pre-stored centroids, the 
signal contained in a certain window could be classified as representing a moving train, or the 
absence of a moving train. 

The work that was developed, and that led to this paper, can be considered similar to the 
one based on the LPC analysis, once it is also based on the principle of Vector Quantization 
(VQ), and had as an inspirational principle the subject of speech recognition. 

2. LINEAR PREDICTIVE CODING (LPC) AND CEPSTRAL COEFFICIENTS 

When we have a signal that we want to code according to some coding scheme, several 
alternatives exist to achieve this task. LPC has already been widely used in speech synthesis 
and recognition systems. The work that was developed used LPC for modelling the data that 
was being acquired by the receiver circuit. The original signal came from an accelerometer in 
direct contact with the rail. After performing some experiments, it was chosen a window 
length of 300ms, with a displacement of 100ms [3]. The sampling rate was 16,000 samples 
per second, having each sample linearly quantized to 16 bits. LPC has a general model [4] 
given by, 
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which is assumed to be excited by a source with a flat spectral envelope. Coefficients a(k) are 
called the predictor coefficients, and represent an optimal estimate to the spectrum of the 
windowed signal using N poles (the order of the LPC polynomial). 

An alternative representation of this information can be obtained using another format, 
which eventually can be more useful in the sense that can be more suited to the kind of signal 
we are dealing with, or more physically interpretable. 

The LPC cepstral coefficients provide one such alternative representation, and are a 
very important parameter used in speech recognition. Generally, the order of the set of 
cepstral coefficients is larger than the one used for LPC coefficients, and it is usually made to 
be approximately Q = 3/2 × N. Since we have N = 14 for the LPC order [3], the order used for 
the Cepstrum coefficients was Q = 20. 

The cepstral coefficients, c(k) can be derived directly from the set of previously 
determined LPC coefficients a(k), using the following recursion.  
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This is performed over all a(k) coefficients, for k = 1 to k = N, computing one 

coefficient c(k) in each iteration. However, this expression only gives us the coefficients c(k) 
up to k = N, but we are still left the computation of coefficients running from N + 1 to Q. 
These coefficients are given by the following recursion, where k starts at N  + 1 and goes up 
until Q, computing one coefficient c(k) in each iteration: 
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The two recursions stated above came from [5]. Cepstral coefficients, being the 

coefficients of the Fourier transform representation of the log magnitude of the spectrum, 
have already been shown, and are considered to be, more robust for speech recognition than 
the LPC coefficients. The goal of this work is to verify in what measure this robustness is also 
extendible to the class of signals we are dealing with, taking advantage of this benefit. 

3. THE TRAINING PROCESS 

Using an acquisition apparatus, date were collected from the rail. In some situations, we had 
signals concerning to trains running on the same track where the receiver was connected to. 
However, in some other situations, signals were originated by the rail excitation of moving 
trains on adjacent tracks, which could also reach the receiver circuit indirectly through the 
ground. What would be most natural to consider was that these additional signals would have 
no interest, nevertheless both data were equally considered in the training process, because the 
goal is to classify the vibrations to belonging to a moving train or not, regardless of their 
source. Consequently, data will be grouped into two classes, “Silence” and “Moving train”, 
leading us to have a codebook with a size L = 2. 

There is a training corpora, consisting of about 67% of the whole set of data, leaving the 
rest 33% for recognition. The two classes were individually trained according to an automatic 
procedure which received all available data and the algorithm was free to decide how to 
allocate data to both centroids. Each centroid is made up of coefficients concerning a 14th-
order LPC analysis. In a starting phase, we had a centroid resulting from the average of all 
data. Afterwards, this was partitioned in order to have a new additional centroid, since the 
codebook will have two. Data was now reclassified with these two centroids, and a new 
clustering within each class was performed using the Lloyd algorithm [4]. This process was 
then iterated to generate the two final centroids. Within each iteration, classification is made 
upon a minimum-distortion or nearest neighbour selection rule. 

However, it should be noted that the mentioned average was not taken directly from the 
LPC coefficients. Instead, the corresponding reflection coefficients (RC) were derived from 
the LPC polynomial for stability reasons. When the iterations are finished, the RC coefficients 
are converted back to LPC coefficients. 

Training was also made using a manual segmentation of the training data, where the 
main idea is to provide each centroid with the suitable data. This accounts for human decision, 
based on listening tests in order to decide which data indicates a moving train or merely 
background noise or other kind of noises (but no train). 

Figure 1 depicts the Bode amplitude diagram of the two automatically resulting 
centroids (red and blue plots) and the manually clustered centroids (cyan and black plots). 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

Blue and black plots correspond to the “Silence” centroids while red and cyan are for the 
“Moving train” centroids. 
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Figure 1 - Bode amplitude diagram of the centroids, both manual and automatic. 

 
To conclude the training process, the set of LPC coefficients is converted into a set of 

20th order cepstral coefficients using the recursions of equations (2) and (3), giving the final 
coefficients determination. 

The overall training process is summarized in Figure 2. 
 

 
 

Figure 2. Block diagram of the training process. 

3.1 Distance measure 

During the training process, a distance measure is computed against each of the two centroids, 
which are iterated until some decision rule is met. The distance measure that was used was the 
Euclidean distance [6], stated by  
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This distance measure is the most suited when using cepstral coefficients. 

4. THE RECOGNITION PROCESS 

The classification or recognition process is accomplished by individually analysing each 
incoming frame containing the signal listened from the rail. For each frame, a 14th order LPC 
analysis is made, followed by a conversion to a set of 20th order cepstral coefficients. 
According to the Euclidean distance and following the nearest neighbour rule, determination 
is made upon the class to which the data contained in the frame belongs to, by using the 
previously determined centroids, based on cepstral coefficients. 

However, as was seen in [3] by taking preliminary results, the classification exhibited a 
great deal of false alarms, foreseeing the need for using something else to aid in the decision 
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process. It was seen that the distance asymmetry (the difference between the distances to each 
centroid) and the energy level could be useful for reducing these detection errors. After 
performing some tests, a heuristic was established to decide which decision to take based on 
the information contained in these two parameters [3]. The same heuristic was used in this 
work in order to put both approaches evenly with the purpose of having a better performance 
comparison. 

This recognition process can be summarized according Figure 3. 
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Figure 3. Block diagram of the recognition process. 

5. EXPERIMENTAL RESULTS 

Taking the classification corpora, data was subjected to classification in order to assess the 
performance of the system. In the following figures, for each frame of the signal, three 
informations are given in the form of dots. The green dots indicate the distance to the 
“Moving train” centroid, the blue dots indicate the distance to the “Silence” centroid and the 
black dots give an indication about the output of the system. This indication, when high, tells 
us that the frame was classified as “Moving train”, and as “Silence”, otherwise. 

The magnitude of the distances is different when using cepstral or LPC coefficients 
because the metric is also different, according to each approach. 

In Figures 4 and 5 there are depicted situations for trains running on the same track as 
the sensor’s, or on adjacent tracks, respectively. The obtained result is confronted with the 
result obtained for the same situation when using an LPC-based system. In order to have a 
better level of comparison, results for both cepstral and LPC-based algorithms come from an 
unsupervised training algorithm, leaving aside the manual training. 

 

 
a) Using cepstral coefficients 

 
b) Using LPC coefficients. 

Figure 4 - Classification results for centroids resulting from automatic clustering data, for a train 
moving (approaching a train station, stopping and withdrawing) on the same track as the sensor’s. 

 
At a first glance, in Figure 4, the train indications using one or the other type of coding 

representation, yield very similar results.  
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In Figure 5, it can be seen that in the cepstrum-based method, the train begins to be detected 
before the moment it does by the LPC-based method and that in the withdrawing phase, it can be 
sensed up to some later instant using the first method when compared with the second. 

 

 
a) Using cepstral coefficients 

 
b) Using LPC coefficients. 

Figure 5 - Classification results for centroids resulting from automatic clustering data, for a moving 
train (non-stopping) on a contiguous railway line. 

 
It should be emphasised that it is preferable to have a fully automated system in which 

human intervention is reduced to the indispensable. However it is interesting to have an idea 
about the performance of the cepstral-based system when training is accomplished through a 
manual segmentation of the training data. In Figure 6, classification for both of the previously 
tested situations is shown, but the underlying training procedure is based on a manual 
partition of the training corpora. It can be noted that for the situation of the train on the same 
track as the sensor’s, there are false alarm errors, so the results obtained by the system where 
the training was automatically done, show to be better. On the other hand, the indication of 
moving train vibration on a contiguous track stands for a longer period. 

 

 
a) Moving train (approaching a train station, stopping 
and withdrawing) on the same track as the sensor’s. 

 
b) Moving train (non-stopping) on a 

contiguous railway line. 

Figure 6 - Classification results for centroids resulting from manual clustering data, using cepstral 
coefficients. 

5.1 Train distance assessment 

The sooner the train is detected, more time we have to take any necessary measures. 
According to a study done in [1], by knowing the velocity of sound in the railway tracks, and 
the time when the train begins and ends to be sensed, one can estimate the distance at which 
the train begins and ends to be detected (in the beginning of the approaching phase and in the 
end of the withdrawing phase, respectively). 
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In order to have a clear comparison on the performance of this automatic detection 
system, using one type of coefficients or the other, Table 1 shows the average results 
according to all the experiments that were made, showing the distances at which the train 
begins and ends to be detected. These results include distances using LPC coefficients, 
already presented in [3], and using cepstral coefficients. 

 
 Automatic detection distance 

 using LPC coefficients [m] 
Automatic detection distance using 

Cepstral coefficients [m] 
Approach phase 1240 1040 

Withdrawal phase 830 890 

Table 1 – Estimated train detection distance by the automatic system, using LPC coefficients and 
cepstral coefficients. 

 
It can be noted that, in the approaching phase, the detection distance by using cepstral 

coefficients is poorer than the one by using LPC coefficients. However, in the withdrawing 
phase, the use of cepstral coefficients lets us track the train up to a longer distance. The tests 
underlying these results used data with trains moving on the same track as the sensor’s, 
because only in this situation it makes sense to have an estimate of the distance to the detected 
train. 

In situations where we have trains running on neighbour tracks, whose vibrations get to 
the sensor through the ground, we cannot have an estimate of the distance to the train. This is 
because we have not taken into account for the transfer function of the terrain between the 
tracks where the train is moving, and the track where the accelerometer is attached to. We can 
only take into account the time indication for the detection. Based on tests performed in these 
situations, it was seen that one could, in average, detect a train 6.5 seconds before the same 
detection could be achieved by using LPC coefficients, and that the train could be perceived 
(in the withdrawing phase) for more 10.4 seconds than by the LPC-based algorithm. 

6. CONCLUSIONS 

In this paper, an automatic remote train detection system has been described. The underlying 
principle for this system is pattern recognition using vector quantization, taking as a base, the 
same methods used for speech recognition. Through this, one can classify the frames of data 
collected from an accelerometer placed on the railway tracks, to belonging to one of two 
classes: “Moving train” or “Silence”. 

Prior to classification, this system is trained in order to get the coefficient values that 
model each of the two centroids. The model is established using a 20th order cepstral analysis. 
These coefficients are obtained by firstly performing a 14th order LPC analysis and then 
converting this set of coefficients to the set of cepstral coefficients just mentioned. These are 
only an alternative representation of the LPC coefficients, but are more suited for speech 
recognition than the first. In this work it was tested how this could also apply to vibrations 
coming from the railway line, pursuing the same objective as in [3]. 

It was seen that the obtained results, when considering trains moving on the same track 
where the sensor (accelerometer) was connected, were roughly the same, though slightly 
inferior to those obtained in [3], where LPC analysis was used. 

On the other hand, if data indicating moving trains, coming from neighbour tracks, 
reach the sensor, when comparing the moments when the train begins and ends to be detected, 
it could be seen that the cepstrum based system was able to keep track of the train’s 
movement in a wider amount of time. So, in this particular aspect, the cepstrum approach has 



ICSV14 • 9-12 July 2007 • Cairns • Australia 
 

shown to have a better performance than the LPC-based system. 
In the future, one could consider the study of the frequency response of the ground to 

understand why the filtering performed by the soil is favourable to this cepstrum based 
method. 

On the other hand, if one wants to think of this system as being only sensitive to 
vibrations present in the same track as the sensor’s, there could considered an adaptive noise 
cancellation [7], in order to avoid interference from neighbour tracks. Some applications can 
be developed in order to make the acquisition in a certain railway track immune to the 
vibrations resulting from traffic of trains on neighbour tracks. 
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