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Abstract

When a laminar boundary layer exists on the surface of an aerofoil up to the trailing edge, a
tone or a number of tones are sometimes produced. These tones have been the subject of a
number of investigations which have proposed a variety of different mechanisms regarding
their production. This paper describes the tone generation mechanism and then describes the
development of a theoretical model to estimate the tone frequencies. The model is validated
against experimental results for two cases.

1. INTRODUCTION

When a laminar boundary layer exists on one surface (usually the pressure surface) of an
aerofoil up to the trailing edge, in certain instances a tone or a number of high amplitude tones
are produced. This noise is referred to here as laminar boundary layer instability noise
although it is sometimes referred to as laminar boundary layer vortex shedding noise (e.g.
Brooks, Pope and Marcolini [3]). The first comprehensive study on the noise generated in the
way was by including Paterson, Vogt, Fink and Munch [9] who observed (1) the ‘peak
frequency’, f;, of the noise produced by the interaction of airflow with the aerofoil scaled
approximately according to f; o« U,'”, (2) the presence of the tone was associated with a
laminar boundary layer existing up to the trailing edge of the aerofoil (3) the frequency of the
tones when plotted against free stream velocity U, exhibited a ladder type variation for small
variations in the free stream velocity and (4) that the frequency of the tones on each rung of
the ladder was approximately proportional to U.,* (for the cases that they investigated).

Tam [11], Wright [13], Longhouse [6], Fink [4] and Arbey and Bataille [4] all proposed
that the tones were produced by the amplification of boundary layer instabilities (known as
Tollmein-Shlichting (T-S) waves) on the pressure surface of the aerofoil and an acoustic
feedback loop which reinforced/excited the T-S waves. Arbey and Bataille’s feedback
mechanism is described in detail here and is used to develop a model to predict the frequency
of tones produced by laminar boundary layer instability noise.

Arbey and Bataille conducted a comprehensive experimental and theoretical investigation
into the noise generated by an aerofoil immersed in a laminar flow and found that the noise
consisted of a broadband contribution which peaked at f; and a discrete contribution at
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equidistant frequencies f,. They concluded that the broadband contribution could be attributed
to the diffraction of T-S waves in the developing boundary layer by the trailing edge, whereas
the equi-spaced discrete frequencies were due to an aeroacoustic feedback loop, between the
aerofoil trailing edge and the point of first instability. Arbey and Bataille’s proposed feedback
loop is summarized in figure 1 below.

T-S wave forms in the boundary layer on the pressure
surface of the aerofoil

The T-S wave propagates along the surface of the
aerofoil. As the wave propagates through different |

boundary layer profiles its amplitude and phase change. At certain frequencies the phase of the
sound wave and the phase of the T-S
l wave are equal at the point of first
instability so the sound wave
As the T-S wave travels over the trailing edge of the reinforces the T-S wave
aerofoil, sound is produced and radiates from the trailing
edge. Some of this sound travels back upstream towards T

the point of first instability

Figure 1. Flow diagram of the feedback loop proposed by Arbey and Bataille

McAlpine et al. [7] and Nash et al. [8] proposed a new mechanism explaining laminar
boundary layer instability noise. Using linear stability analysis and experimental
measurements of the boundary layer profiles over the pressure surface of an aerofoil they
were able to calculate the total amplification of T-S waves over the surface. They proposed
that the frequency of the tonal noise produced in these cases was close to the frequency of the
T-S wave with maximum linear amplification over the aerofoil and that the majority of
amplification occurred across a small separation bubble close to the trailing edge which was
present in the cases they were investigating.

This paper describes an accurate method of calculating the frequency of laminar
boundary layer instability tones produced by an aerofoil according to Arbey and Batille’s
feedback loop. In §2 a method based on that proposed by McAlpine et al. and Nash et al. to
calculate the amplification of a T-S wave over the surface of an aerofoil using an easily
automated method of solving the Orr-Sommerfeld equation is described. In §3 a model based
on the feedback mechanism proposed by Arbey and Bataille is developed. While in §4 the
model is validated against experimental results for two cases.

2. MODELLING T-S WAVE PROPAGATION

Following the method of McAlpine et al. and Nash et al. it is assumed that the two-
dimensional T-S waves can be modeled by spatial modes of fixed frequency with slowly

changing wavelengths. The stream function y/( f, n,t) of these T-S waves is described by the
following expression

(Epz-ar)

wlE.ine)= p(3)e’V ()

where i=+/—1, ¢ is time, ¢ is the perturbation amplitude and 7 is the stream-normal
coordinate. The complex wavenumber ¢ is assumed to vary slowly with the streamwise
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coordinate f and the wavenumber of the least stable mode at a point along the surface of the

aerofoil is calculated for a given velocity profile U, Reynolds number R and frequency @ by
solving the Orr-Sommerfeld equation

(Ua—a))(¢// —a2¢)—U//a¢+é(¢iv —2a%¢" +a4¢):0 )

The prime denotes differentiation with respect to the dimensionless coordinate 7= 7/L, R =

UL/ v is the Reynolds number and the variables in the Orr-Sommerfeld equation (3) are all
non-dimensionalised using the free stream velocity U., kinematic viscosity v, and the
Falkner-Skan viscous length L [10] (dimensional variables are indicated by a hat). For
boundary layer flow equation (2) is subject to the following boundary conditions

n=0,4=0, ¢ =0; ;ggo,¢=o,¢/=o 3)

2.1 Numerical method

For the spatial stability case the eigenvalue appears to the fourth power in the Orr-
Sommerfeld equation. To reduce the order of the eigenvalue problem from a fourth order
problem to a second order problem a transformation is introduced (following Haj-Hariri [5])

¢ =De @)

The reduced Orr-Sommerfeld equation is thus
(Ua- )" - 200 )-U" o + é(qf'v —40" + 400" )= 0 s)

with the same boundary conditions as equations (6) with ¢ replaced by ®. The perturbation
amplitude ®(77) was approximated by a series of Chebyshev polynomials 7,,(x), defined on the
interval -1 <x <1 at the Gauss-Lobbotto collocation points x;.

®(n)= Xa,T,(x), T,(x)= cos(n cos™! (x)) and x; = cos(%], i=0,.,N (6)

The derivatives of ® were found by differentiating the coefficients @, through the use of
derivative operators D.

©*(n;)= 3 Dja,T;(x;) ™)
0

The derivative operator D was constructed as a matrix (see for example Trefethan [12]) and
higher order derivative operators are simply defined D= (D"~

The derivative operators D" are defined on the Chebyshev domain (-1 < x < 1) and are
required to be mapped onto the semi-infinite domain (0 < 77 < ). This was done using an
algebraic transformation which required the application of the chain rule to the derivative

matrices D*. The derivative matrices for the semi-infinite domain are denoted DF.
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Substituting the series representation for @ (equation (7)) into the reduced Orr-Sommerfeld
eigenvalue problem (5) yields a second order eigenvalue problem of the form

@a2+Ba+Cb=0 (8)

where A, B, and C are matrices which need to be determined for each boundary layer profile,
Reynolds number R and frequency @. Boundary conditions (equation (3)) are applied to the
first and last two rows of matrices A, B and C. Following Bridges and Morris [2], the
eigenvalues of the companion matrix are the roots of the corresponding polynomial equation,
a companion matrix for equation (8) can be written as

-B -C A 0| a®
e =0 9)
I 0 0 I ()
This equation represents a complex generalized eigenvalue problem and was solved using the
QZ algorithm.

2.2 Flow solver

The velocity profiles at a number of stations on the surface of the aerofoil were calculated
using XFOIL. XFOIL solves the flow over the aerofoil using a coupled potential flow solver
and boundary layer integral method. XFOIL was selected because of its ability to (very)
quickly and accurately determine boundary layer profiles on an aerofoil surface even for
mildly separated flows.

The boundary layer displacement thickness 6%, the shape factor H were calculated using
XFOIL at each station on the pressure surface of the aerofoil. The boundary layer velocity
profile at each station was defined as the Falkner-Skan velocity profile with an identical shape
factor to that calculated using XFOIL. Falkner-Skan boundary layer profiles were calculated
(from the Falkner-Skan equations) using a parallel shooting technique employing a fourth
order Runge-Kutta-Gill solver.

2.3 T-S wave amplification

The total amplification 4 of a T-S wave with slowly varying complex wavenumber between
f =a and é = b (where b is downstream of a) over the aerofoil surface § is

A= exp[— bja (é)ds(é)j (10)

For the calculations presented in this paper the integral in equation (10) was evaluated by the
rectangle rule using stations located at 2% chord intervals from the leading edge to the trailing
edge.

3. EXTENSION OF THE MODEL TO INCLUDE A TONE SELECTION
MECHANISM

The model is based on the feedback loop proposed by Arbey and Bataille described in figure
1.
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Assuming that sound is produced at the trailing edge and propagates upstream outside the
boundary layer to the point of first instability, by calculating the phase change of both the
sound and the T-S wave around the feedback loop, the frequency at which T-S waves will
become excited\reinforced and produce tones may be calculated. The total phase change
around the feedback loop may be deduced by considering each component of the loop
separately.

Considering first the phase change of the T-S wave as it propagates downstream along the
aerofoil surface. From inspection of the stream function of the T-S wave (equation (1)) the
phase change over the aerofoil surface S between the point of first instability (at @) and the
trailing edge (at b) is

[, (a)g)dS(g) (11)

The integral in equation (11) is a function of frequency and was evaluated using the rectangle
rule using stations located at 2% chord intervals from the leading edge to the trailing edge.

According to Arbey and Bataille, Yu and Tam [14] showed that diffraction of the T-S
wave at the trailing edge results in a phase shift of © radians which must be added into the
phase change around the feedback loop.

The sound wave generated at the trailing edge then propagates back upstream at a speed of
approximately co - U, where ¢ is the speed of sound and U, is the average free-stream
airflow speed over the surface of the aerofoil between the trailing edge and the point of first
instability. The phase change of the sound wave is thus

i (12)
Co — Uoc,L

Where L is the distance along the aerofoil surface between points a and b. At each frequency
the point of first instability, a, was taken to be the first station where ¢; became negative.
When the total phase change around the feedback loop is equal to a multiple of 27 the
acoustic wave will excite\reinforce the T-S wave at the point of first instability and will result
in a tone being produced i.e. tones will occur at frequencies at which the following
relationship is satisfied

Ljfjoz,(xl)dxl +1+LEF=;¢, n=123.. (13)
2r 2 ¢ -U,,

In the current method the phase function F' was calculated over the range of frequencies for
which T-S wave amplification occurs. A least squares polynomial was fitted to F and
frequencies which satisfy /' = n (which correspond to frequencies at which tones occur) were
determined.

4. MODEL VALIDATION

For all results presented here, wind tunnel corrections were not applied when calculating the
flow around the aerofoils. This may be a source of some small error, however it is assumed to
be minimal. (Hopefully wind tunnel corrected data will be presented at the conference).

In this section the models described in §2 and §3 are used to predict the tone frequencies
produced by an aerofoil for two cases. The calculations are compared with the results of two
published experimental investigations.
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4.1 300mm chord NACAO0012 aerofoil inclined at 4° to a 29.7m/s airflow

As part of a comprehensive investigation into the laminar boundary layer instability noise
produced by an aerofoil McAlpine et al. experimentally measured the tonal noise produced by
a 300mm chord NACAO0012 aerofoil inclined at 4° to a 29.7m/s airflow. For this case a single
high amplitude tone was observed at 1048Hz. They measured the boundary layer velocity
profiles over the pressure surface of the aerofoil using laser Doppler anemometry and
calculated the total T-S wave amplification using a method similar to that described in §2
(they used a different method of solving the Orr-Sommerfeld equation). McAlpine et al.
observed a small region of separated flow close to the trailing edge of the aerofoil and
observed that the T-S waves underwent large amplification in these regions.

The method described in §2 predicted peak T-S wave amplification at 1000Hz (which is
very close to the 1050Hz calculated by McAlpine et al. using experimentally measured
boundary layer velocity profiles).

McAlpine et al. only observed one tone for this case (at 1048Hz). However, using the
method described in §3 frequencies at which feedback would occur were calculated. The
calculated tones were spaced approximately 60Hz apart and one was calculated to occur at
1042Hz.

Inspection of the local T-S wave amplification rates (see figure 2 below) showed that, as
observed by McAlpine et al., the regions of mildly separated flow close to the aerofoil trailing
edge produced relatively high levels of T-S wave amplification.
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Figure 2. Local T-S wave amplification rates (¢;) at various chordwise positions along the aerofoil
surface (the number adjacent to each curve corresponds to the station position as a fraction of the
chord from the leading edge)

4.2 9” chord NACAO0012 aerofoil inclined at 6° to a 30-60m/s airflow

Paterson, Vogt, Fink and Monk measured the aeroacoustic noise produced by a 9” (228mm)
chord NACAO0012 aerofoil inclined at 6° to a 30-60m/s airflow. They observed that when the
frequency of the tones were plotted against airflow speed the tones arranged themselves into a
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‘ladder’, which for large variations in airflow speed the tone frequency was proportional to
~U.."” but for small variations in airflow speed the tone frequency was proportional to ~U.,"*
(these are the ‘rungs’ of the ladder). In this section the models described in §2 and §3 are used
to predict the frequency of the tones produced by the aerofoil at airflow speeds between 30m/s
and 60m/s. The results of the calculation are shown in Table 8 below and are compared with
the frequencies given by an empirical equation given by Paterson et al. which was derived
from their experimental data.

Table 8. f; calculated using a number of different methods

U (m/s) 30 33 36 39 42 45 48 51 54 57 60
f: (Hz): this paper 1090 | 1260 | 1430 | 1580 | 1760 | 1950 | 2120 | 2330 | 2500 | 2720 | 2880
/. (Hz): Patersonetal. | 973 | 1123 | 1279 | 1443 | 1612 | 1788 | 1970 | 2157 | 2350 | 2549 | 2753

The frequency of maximum T-S wave amplification predicted using the method presented in
§2 is in reasonable agreement with those predicted by the empirical relationship given by
Paterson et al.

It was observed that the boundary layer displacement thickness at the trailing edge
predicted by XFOIL did not scale with U..”> but yet the frequency of maximum T-S wave
amplification £; calculated using the method of §2 scales with U.,'* which is very close to the
observed U' scaling. This indicates that the f; does not necessarily scale with boundary layer
size at the trailing edge and thus caution should be exercised when using models which
assume that it does.

The frequency of the tones calculated using the models described in §2 and §3 are plotted
against free stream airflow speed in figure 3 below. The classic ‘ladder’ diagram is
reproduced with the frequency of maximum T-S wave amplification scaling in proportion to
U.,,"* and the tone frequencies scaling in proportion to U7 (close to the ~U™* scaling
observed by Paterson et al.).
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Figure 3. ‘Ladder diagram’ calculated using the method described in §2 and §3
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As in the first case the XFOIL flow simulation predicted a region of mildly separated flow
close to the trailing edge of the aerofoil on the pressure surface for all airflow speeds. For all
cases the T-S waves were calculated to be highly amplified in these separated flow regions.

5. CONCLUSIONS

A theoretical model for laminar boundary layer instability noise proposed by McAlpine et al.
and Nash et al. was extended to incorporate a tone selection mechanism based on the
feedback mechanism proposed by Arbey and Bataille and was used to predict the frequencies
of the tones for two cases. The model employed a global method of solving the Orr-
Sommerfeld equation which led to easy automation. The models could be used as a predictive
tool for laminar boundary layer instability noise on arbitrary aerofoil shapes. This is
significant as no accurate method currently exists for making laminar boundary layer
instability noise predictions, (although empirical models exist for the NACAO0012 aerofoil e.g.
[3]). The model requires further validation (against experiments) and in particular wind tunnel
corrections need to be incorporated.

Confirming the hypothesis of McAlpine et al. and Nash et al. for all cases the XFOIL
simulations predicted a region of mildly separated flow close to the trailing edge in which T-S
waves underwent high amplification.

Due to the non-linear nature of the feedback mechanism, the level of tones is not related
to their linear amplification over the pressure surface of the aerofoil. Thus the model can only
be used for predicting frequencies at which tones will occur (and not the level of the tones).
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