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Abstract

This paper presents an analytical formulation famrecting the diffraction associated to the
second harmonic of an acoustic wave, more compgat that usually used. This new
formulation, resulting from an approximation of t@rection applied to fundamental, makes
it possible to obtain simple solutions for the setdharmonic of the average acoustic
pressure, but sufficiently precise for measuring plarameter of nonlinearity B/A in a finite

amplitude method. Comparison with other expressieqsiring numerical integration, show

the solutions are precise in the nearfield.

1. INTRODUCTION

In acoustic parameters measurements of a mediuis,nécessary to take into account the
diffraction effects of the ultrasonic source to noye the precision of measurements. The
measurement cells usually used in transmissionigtoostwo circular transducers (one used
as source and the second as detector). In thasstigits the detector will translate into
electric voltage the average acoustic pressurdsoreception area. The analytical solutions
describing this average pressure can be formulagdthe sum of two terms, one
corresponding to the propagation of a plane wawe, the other including the effects of
diffraction generated by the geometry of the sowketector unit.

The attenuationr and velocityc can be obtained in the case of linear acoustiderBnt
authors [1- 4] gave exact and asymptotic expressadrthe average pressure received by a
circular transducer. These expressions permittabksh correction functions of diffraction in
velocity and attenuation measurements [5, 6].

On the other hand B/A parameter is measured irfithe of nonlinear acoustics. The first
measurements of B/A parameter by finite amplitudethods rested on an analytical
expression of the second harmonic by consideriegpitopagation of a plane wave [7-9].
Various authors [10, 11] then improved the preaswf these methods by including a
function to correct diffraction effect resultingoi the relation established by Ingenito and
Williams [12] for the average pressure exerted bg second harmonic. However, the
correction of diffraction obtained is not very piieal because it can be evaluated only by
numerical integration.

The objective of this paper is to show that one ohtain a simple and precise form by
simplifying the correction function of diffractiofor the fundamental. Then we will give
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simple expressions of the average pressure exdyethe second harmonic, including
diffraction and attenuation effects. We will shomat the results obtained are equivalent to
those establish by Coob and validated in measuresystems [10]. But before establishing
this result it is necessary to present the varicogections of diffraction applicable to
fundamental from the acoustic pressure.

2. CORRECTION OF DIFFRACTION FOR THE FUNDAMENTAL

2.1. Function D;(2) of diffraction correction for the fundamental

For the nondissipative cas€éa; = 0), Williams [1] gave the exact expression of the
average velocity potential ( figure 1) :

_j4U,
kmr

J'”lzejk[zz+4a2cos(9)21“2 sm(@)zde (1)

0

(@(r,2) = JL; “e

The first term represents the velocity potentiathie case of a plane wave, therefore the
. . . Ug i
average velocity potential on the area of recepiag o(2) = JTOeJkZ =(@o(r,2)). The

second part of equation (1) corresponds to difibaceffect on the velocity potential, with
Uy the source amplitude velocity akdthe wave number.

The average acoustic pressure applied on the ercess expressed in the form:

(p1(r,2)) ==jpo@a(r,2))

Transduce
Transducer Ir (detector) I
(source) L __

Figure 1. Geometricalonfigurationof the source-detector.

The correction diffraction functiod1(z) allows to adapt the theoretical plane wave to & rea
situation. Consequently :

{@r.2) (p(r.2)
(Bo(ri2)) (Pu(r.2))
<p1o(r,2)> is the average pressure provided by the fundahenthe case of a plane wave,

with Py = o ¢o Ug is the average acoustic pressure (the sourceks e module of the
average pressure is given in dissipative mediutherform:

D,(2) =

with (p,(r,2)) = Pe*? (2)
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(pu(r,2) = Poe™*Dy(2)| (3)

The exact expression d; (z) is obtained with the Williams solution (1) :

T T .
Dl(z):l—ﬂe‘lkzjo e k[2*+42° c0s6)’ 12 5in 91249 (a)
T
2.2. Simplifications of the function of correction D1(2)

For z >a Bass [2] gave a very good approximatioime solution (4) which can

be simplified for§(z) > > | in the form:

2 o
&(2) 2 2 ~I
D(2) =1-|1- 4 5
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with E(z):g(\/zz+4a2 —z). This expression was used by Coob [10] to reduce

Dl(z)zand to evaluate the average pressure of the sé@ontbnic.

By limiting to the £' order the development §f] Y2 in the solution (4), Rogerst al.
[4] obtained a good approximation in the form:

D,(2) :1—e“'ki{%(k—a2}+ JJ(kiH (6)
V4 V4

It is valid for all the values of/a if (ka) > >> 1, and the error take back by this

simplification compared to the exact solution (g)lower than 0.4 % foka = 100 for
zla<(ka)"?, the preceding condition implieka®/z > (ka)*>> 1, and one can reduce the
expression (6) by using the asymptotic developmeitise Bessel functions :

27
Tk a

1/2
D1(z)=1—[ 2} e1M4=1-9@) (7)

where we defineg(z) as the diffraction function, related to the pag#ens of sourcea and
k, and having this property Lim [g(z)] =0 (plane wave case).
k

a— 00
2.3. Comparison of the various expressions of D; (2)

Figures 2a and 2b represent the modiDk¢ of the different expressions. We use yaxis
two variables z/a ands = zA/a? = 27z/ka? With the variables, we can distinguish the
near field (s 1) and the far field(s > 1). Simulations are obtained with= 1 cm and

ka =125

Simplification (6) is confused with the exact sadat (4), and the asymptotic expressions
(7) constitute a good approximations in the neeldfifig. 2a). They diverge from the
exact solution foez/a > 60 (s > 3) (fig. 2b). The relative error (fig. 2c) confirnise range
of validity z/a < (ka}’? (s < 27#(ka)*?) for (ka)>>> 1. Thus the relative error is lower
than0.7 % The lower limit being in any event limited in epments to the appearance of
standing waves in the measuring cell.
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Figure 2. Functions of diffraction correction . Qaamison with the exact solution of Williams (4).
Figure (c) present the relative error between egaleition (4) and solutions (5) and (7)
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3. CORRECTION OF DIFFRACTION OF THE 2"° HARMONIC
3.1. Function of diffraction correction for the second harmonic

Ingenito and Williams [12] obtain an equation fdretsecond harmonic in the case of
monochromatic wave in non dissipative medium. We foad in [10] a good approximation
of this solution which can be used in the dissigatase.

Average potentialg is given by:

:_'B_kz Z iky mayy ( _ﬂjz —2a, (z7y)
(@(r,2)) 2cq joe e <qq rz-> e dg (8)

with : S :1+% B/A anda;: the second harmonic attenuation,

p2= -2jpow @ , and B/Ais the parameter of non-linearity.

The relation (8) is the reference analytical solutior second harmonic average velocity
potential in dissipative medium. Ingenito and Wdiths [12] showed that a good
approximation consisted in replacing@g?> by <@>2 in the expression &f @>. Thus,
we can write:

(@) =(@(r.2)’ {202 - 92| = (@o(r. 2)’ - T D] (@)
with f(2) =29(2) - 9(2)* =1-D,(2)*> (10)

with these relations and some arrangements onenofmathe average pressure of the
second harmonic according tB4(z) :

2 2 )
(p2(r,2) = KPOZe_Zalzj e(zal_UZ)le(z—%j dt//]eJZkZ (11)

with K = 2+ B/ Ak
40,Cy
| L . | _{p,(r,2)
The function of diffraction of the second harmonan be given byD,(2) —m.
20\"

Thus while considerin@,(z) independent of the attenuation, which amount passing
the effects of the attenuation and diffraction,olstain :

_ 1,2 l// _1 z (/j 2
Dz(z)—1—;[01‘(2—5)dw—EjODl(z—Ej dy (12)

3.2. Simplificationsof Dy(z) and <py(r,2>

According to (12) the correctioD,(z) is related toDy(zf wich can be simplified. Since
D1(2)2 :1—Zg(z)+g(z)2 and Lim [g(z)]:O, we can neglect the term of#pr large
ka - o

value ofka Thus the solution (7) and (5) with the followingnditions: z/a< (ka)}'* and
(ka)>>>1, bring to this simplified expression :
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We can thus take advantage of the simpler expmesdi8) to calculate a diffraction
functionDy(2). In this case the integral (12) can be evaluated,it’s give :

Z _—imla . 4
D,(2) 01-C |—= 7% with C=—=|2J2-1)=1375 (15)
\ ka2 3\/E( )

Finally with (11), we can established a simple egpron sufficiently precise able to give
the average pressure provided by the second hacnwmia receiver with the same
dimensions of the source:

e 027 _

20'1 b))

20,2
sz(f,Z»‘:KPoz( ° J|D2(Z)| (16)

3.3. Comparison of solutionsfor the average presses |<p(r,2)>|

We simulate the expressions of the relative avepagssure [|gx(r,z)>|/Po in two extreme
mediums in term of attenuation and nonlinear e$fect

Water : ¢=1483 m/s,0=1000 kg/m,2;=0.25.10" Npmi‘Hz? ao=4. a1, B/A=5.2
Glycerol : g=1909 m/s0=1260 kg/m,0=26.10"% Npm'Hz? a,=4. a1, BIA=9.4

The conditions, close to the Coob experiments fare3 MHz, a = 1 cm,d = 0.5 W/cm?
for water and 1o =10 W/cmZor glycerol, with 1o = Po?/(200C0).

The results are presented on figure 3 and one ttwésur solution (15-14) is similar with
that obtained by Coob [10]. Importance of therdition correctiorD,(z) is visualized by
the representation of the simple case of a planewae. forDy(z) = L

We also simulated the relative average pressurarmat with the reference solution (8)
and the King integral [13-14] for fundamenial

Relative errors between the reference solution thiedsolutions (15-14) and (11-14), are
presented figure 3 c-d for water and glycerol, whemmulations are carried out with a
tolerance of 18 for the calculation of the integrals with the Meall softwarE. They show
that the solution (16-15) is overall more preciBant the solutions (11-14) and under the
conditions adopted for simulation. Moreover, thenpaoting time necessary to the solution
(16-15) is much weaker than that of the referebation which include a triple integral.
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Figure 3. Simulations of analytic solutions of #ezond harmonic average pressure for water (a) and
glycerol (b) Relative variation between referenskeiton and solutions (16-15), (11-14) for water (c

and glycerol (d).
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4. CONCLUSION

We showed in this article that we can obtain a fiencof diffraction correction for the second
harmonic much simpler than those usually used. fkis formulation is obtained from a
simplification of the correction applied to the damental acoustic pressure.

We can use this new and simple expression to descwith a very good precision, the
second harmonic pressure detected by a transdtisezan be exploited in measurements of
non-linearity parameter B/A. Another interest okgh simple analytical solutions is the
significant reduction of the computing times whbayt are used in processes of simulation of
systems working in the field of nonlinear acoustics
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