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Abstract 
 

Vibration is a serviceability limit-state for the design of suspended floor systems in buildings 
that is not well understood by many structural engineers, and is often ignored.  Dynamic 
response is an important design consideration for slender, two-way floors, particularly for 
those of post-tensioned concrete construction.  At present, there are no reliable design 
guidelines that deal with this problem.  This paper describes a research program, which will 
enable the development of much needed design guidance on the dynamic behavior of 
suspended post-tensioned concrete floors.  Results from this parametric investigation have led 
to the preliminary development of new approach for predicting the natural frequency of flat, 
post-tensioned concrete floor structures.  This new method has been named, the Frequency 
Coefficient-Root Function (FCRF) method.  The FCRF method is a revolutionary and 
convenient tool structural engineers can use to design for the vibration serviceability limit-state 
of cast-insitu, post-tensioned concrete floor systems. 

1. INTRODUCTION 

Floor vibration is typically characterized by cyclic, vertical motion usually resulting from 
transient human induced loads.  Among a number of studies that address this issue for 
composite, steel-framed floors, two very successful design guides have been published in the 
United Kingdom and North America that are commonly referred to and used in practice [1,2].  
The reason these guides are successful in accessing the dynamic serviceability for composite 
floor construction is that they provide reasonably accurate methods for calculating the natural 
frequency of a floor panel. Research focused on the dynamic behaviour of cast-insitu concrete 
floors is limited, particularly for post-tensioned systems.  The only available formal guideline 
for the dynamic analysis and design of post-tensioned systems is the Concrete Society 
Technical Report 43 (CSTR43) of 1994 [3].  Since its publication, there have been reports that 
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the CSTR43 produces over conservative designs when used for assessing vibration 
serviceability, because the method suggested in this guide has the tendency to underestimate 
natural frequency [4-6].   
 
This paper describes a state-of-the-art method for determining the dominant frequency 
response of post-tensioned concrete floors, which was empirically developed using finite 
element and experimental techniques. This method will be known as the Frequency 
Coefficient-Root Function (FCRF) method, and will deliver efficient dynamic serviceability 
designs. 

2. THEORETICAL BACKGROUND 

For single degree-of-freedom (SDOF) structural systems subjected to free vibration, it can be 
shown that for low to moderate damping the natural frequency of the solution to the equation 
of motion is approximately equal to the undamped, natural frequency: 

m
kf

π2
1

=                                                            (1) 

Where, f (Hz) is the natural frequency of the system, k is the system dynamic stiffness and m is 
the system mass.   
 
Cast, in-situ, post-tensioned concrete floors are immensely complicated, multiple- degree-of-
freedom (MDOF) systems that are not easily simplified and demand special attention.  Because 
of the complexity of boundary conditions, material properties, geometry and internal loading, 
vibration problems in post-tensioned floors are very difficult.  The most common approach to 
these problems is the employment of finite element analysis (FEA) to perform eigenvalue 
natural frequency analyses.  In this case, the modal frequencies may take the form: 
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Now, fi (Hz) is the modal frequency, ki represents the modal dynamic stiffness and mi is the 
modal mass, each for the ith mode of vibration.  Recognizing that the modal frequency is 
proportional to the natural frequency of a SDOF system, we have: 

m
kCf ii =                                                         (3) 

In this case, Ci (cyc/rad) is a proportionality coefficient for the ith mode of vibration.  In 
current practice, engineers generally assume the first mode, i = 1, is the governing case as 
calculated from an eigenvalue natural frequency analysis.  This assumption is not necessarily 
true and may result in over conservative and uneconomical designs.  For plate structures, like 
flat, post-tensioned concrete floors, the stiffness-to-mass ratio 'λ (rad/s2) ' is calculated as 
follows: 
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4==λ                                                        (4)   

Here, Edyn (MPa) is the dynamic, elastic modulus of the concrete, I (mm3) is the second 
moment of area per unit width of the slab, Lx (mm) is the short span dimension of the floor 
panel and m (tonne/mm2) is the mass of the floor per unit area.  
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This paper will show that the primary response frequency of a given panel within a flat post-
tensioned floor structure is not always proportional to the square-root of  'λ '.  The findings of 
this research show that the proportionally coefficient, C, and the root of 'λ ' are functions of the 
floor panel aspect ratio, 'α '.  This paper proposes a new expression for the primary natural 
frequency of a floor panel as follows: 
 

 )(),( αλα pp Cf =  )(α λpR                                               (5)   
 

Now, fp is the dominant response frequency of the panel as a function of 'α ' and 'λ ' . Cp(α) is 
the panel coefficient function, Rp(α) is the panel root function, each of which are functions of 
the panel aspect ratio, α = Ly/Lx, where Ly (mm) is the long span dimension of the panel.  
Equation 5 represents the basic form of the Frequency Coefficient-Root Function (FCRF) 
method.  This new, empirical method will assist engineers in the economic design of flat, post-
tensioned concrete floors for vibration serviceability. 

3. FINITE ELEMENT ANALYSIS 

3.1 FEA Panel Configuration Methodology 

The objective of this phase of the investigation was to determine the response frequency of a 
variety of floor panel configurations.  In plan, these configurations were based on the bending 
moment and deflection coefficients derived from yield-line theory, which account for edge 
continuity conditions for wall supported floor plates [7].  A plan sketch and of list of these edge 
conditions are shown in Figure 1. 

 This phase of the study has investigated the dynamic behavior of floors with exterior and 
interior columns.  Using the FEA material model for the floor structure, which was calibrated 
from laboratory tests as described by Jetann et.al.[8], e.g., Edyn = 33.3GPa and ζ =1.2%, a series 
of three-dimensional (3-D) FEMs was established.  This series involved, three sets of three 
models.  For each set, the long spans, Ly, of the floor panels were held constant at nine meters 
(9m) while the short spans, Lx, were adjusted to vary the aspect ratio, α = Ly/Lx, at 1, 1.5 and 2.   
For each model in a set, the parameter 'λ ' was investigated by adjusting the span-to-depth ratio, 
Ly/d, at 25, 35 and 45.  To simulate the effect of support stiffness in real buildings, columns 
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Figure 1 –Floor panel edge continuity conditions 
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were modeled above and below the slab with eight-node solid elements having an elastic 
modulus of 35GPa.  Columns heights were three meters (3m) above and below mid-depth of the 
slab elements, and all translational degrees of freedom at the end nodes were restrained to 
provide fixed supports. Column cross-sections were dimensioned at 5.0% of the panel span in 
each direction at the panel corner to provide reasonable geometry for nominal punching shear 
considerations.  These models were analyzed for eigenvalue natural frequencies and for the 
panel response to a ‘heel-drop’ load function using non-linear, transient dynamic analysis.   
 
3.2 FEA Results 
 
For clarity of discussion, only the series of results related to Panel Edge Condition ‘1’, as 
depicted in Figure 1, will be described initially in this section.  A complete set of results for all 
other panel edge conditions will be summarized at the end of this paper.  A graphic 
representation of one FEM floor structure analysed during the course of this investigation is 
shown in Figure 2.  This particular FEM has the following parameters: α  = 1, Ly/d = 45 and λ = 

7.05.  The FEA results provided in Figure 6 are the set of eigenvalue natural frequencies for the 
first through the thirteenth modes, the acceleration contours immediately following a heel-drop 
excitation and transient dynamic response frequency resulting from a heel-drop excitation.  It 
can be observed that the transient response frequency, of Panel 1, corresponds to the thirteenth 
eigenvalue frequency of 7.6Hz.  It should be emphasized here that in current practice, engineers 
generally assume that the first mode frequency as calculated from an eigenvalue analysis is the 
governing frequency.  Results from this investigation prove that this assumption is not 
necessarily true.  The results given in Figure 2 show that the panel primary natural frequency of 
7.6Hz would be underestimated by 17% if the first mode eigenvalue natural frequency of 6.3Hz 
were assumed to be the governing response for this panel, which could lead to an over 
conservative dynamic serviceability design.   
 
 

TRANSIENT RESPONSE FREQUENCY: 
7.6 (Hz)

α = 1 
Ly/d = 45 
λ = 7.05 

FEM Parameters: 

1-2 

mode freq (Hz) 

6.3 
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6.8 
6.9 
7.0 
7.6 

3-6 
7-8 
  9 

10-12 
13 

Acceleration Contours following 
‘Heel-Drop’ Impact 

Figure 2 – FEM Floor Structure: Results for Panel Edge Condition ‘1’ 
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To obtain the transient 
response frequency, a time-
history record of 
acceleration was extracted 
from the nonlinear, transient 
dynamic FEA output.  From 
the time-history record, a 
power-spectrum was then 
analyzed.  Further analyses 
were conducted by 
adjusting the FEM span-to-
depth ratio, Ly/d, from 45, to 
35 and 25. Now expanding 
this approach, when we 
study the frequency 
response behaviour of Panel 
1 for aspect ratios of α  = 1, 
1.5 and 2 in addition to 

variable values of 'λ', it is obvious 
that the coefficient of 
proportionality and the root of 'λ ' 
change with 'α '.    These three 
cases are plotted together in Figure 
3. By plotting the coefficient of 
proportionality 'C ' and the root of 
'λ ' against the aspect ratio 'α ', 
and performing a regression 
analysis curve-fit to these data, we 
can obtain expressions for each as 
a function of 'α '.  These functions 
are C1(α), the panel coefficient 
function, and R1(α), the panel root 
function, where the subscript of ‘1’ 
indicates the special case of Panel 
1.   Plots of C1(α) and R1(α) are 
provided in Figure 4.   
 
Applying these functions to the 
form of Equation 5 gives the 
Frequency Coefficient-Root 
Function (FCRF) expression, 
f1(α,λ),  which can be used to 
estimate the primary response 
frequency, of a floor with the edge 
continuity conditions of Panel 1, 
as depicted Figure 5, for any value 
of 'α ' or 'λ ' as follows: 
 
 

 

Figure 4 – a) Panel ‘1’ coefficient function, C1(α); 
b) Panel ‘1’ root function, R1(α)
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( )0.9)(47.8)(63.2),( 2
1 +−= ααλαf ( )[ ]56.3)(26.2)(92.0 2 +− αα λ  

4. FIELD TESTING AND FCRF CORRELATION 

The aim of this phase of the study was to measure the natural frequency of post-tensioned 
concrete floor structures in real buildings, and to compare the measured natural frequencies 
with the frequencies predicted by the FCRF method.  This section of the paper will briefly 
discuss the correlation of natural frequency measurements and the FCRF predicted frequency 
response for a floor structure having edge continuity conditions corresponding to Panel 1 as 
depicted in Figure 1. 
 
Vibration measurements were gathered from a suspended, post-tensioned concrete floor panel at 
Charlotte Tower in Brisbane, Australia, which is a 34 story residential building.  An 
accelerometer was rigidly fixed to the concrete surface of the slab at the center of the panel.  
Heel-drop tests were conducted on the panel, and a portable data acquisition system was used to 
obtain the acceleration time-history record and power-spectrum on site.  The measured response 
frequency for this floor structure was 8.5Hz.  The power-spectrum and acceleration time-history 
record for the tests conducted on this panel are given in Figure 5. 
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Figure5 –Charlotte Tower, Brisbane, Australia, Test Panel 1 
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The geometric and material properties of this panel are as follows: Lx = 7200mm, Ly = 
8500mm,  d = 180mm, I (mm3) = d3/12 = 486x103,  m (tonne/mm2) = 432x10-9, f’c = 32Mpa, 
Edyn = 1.04(5055.75)(f’c).5 = 29.7GPa .  These properties correspond to the FCRF method 
parameters: α = 1.18 and λ = 12.95.  By substituting the values of  'α ' and 'λ ' into Equation 6, 
the FCRF predicted natural frequency of the Charlotte Street floor panel shown in Figure 11 
would be calculated as follows: 

( )0.9)18.1(47.8)18.1(63.2),( 2
1 +−=λαf  ( )[ ]56.3)18.1(26.2)18.1(92.0 2

45.12+−  
                                    = 2.7(3.2) 
                                    = 8.6 Hz 
 
The FCRF method frequency is exactly the measured frequency of the floor panel. 

5. SUMMARY 

The research discussed in this paper illustrates that dominant response frequency of a post-
tensioned concrete floor panel resulting from a transient dynamic excitation does not 
necessarily correspond to the first-mode eigenvalue natural frequency.  Furthermore, it has been 
demonstrated through a complete parametric investigation that the primary natural frequency of 
a post-tensioned concrete floor panel can be accurately predicted by a new method: The 
Frequency Coefficient-Root Function (FCRF) method.  The basic form of the FCRF method is 
given by Equation 5.  The development of the panel coefficient function, Cp(α), and the panel 
root function, Rp(α), for a floor with edge continuity conditions corresponding to Panel ‘1’ of 
Figure 5 has been thoroughly explained.  Table 1 summarizes these functions for all of the 
panel edge continuity conditions.  The numerical subscript substituted for 'p' denotes the 
respective panel of Figure 1: 

Table 1:  
PANEL TYPE Cp(α) panel coefficient function and Rp(α) panel root function 

C1(α) = 2.63(α)2 – 8.47(α) + 9.0             1 
 R1(α)  = 0.92(α)2 – 2.26(α) + 3.56 
C2(α) = 6.2(α)2 – 20.3(α) + 23.4             2 
 R2(α)  = 0.9(α)2 – 2.26(α) + 3.68 
C3(α) = 5.6(α)2 – 20.6(α) + 24.3             3 

 R3(α)  = 1.06(α)2 – 2.66(α) + 3.92 
C4(α) = 5.8(α)2 – 18.9(α) + 22.2             4 

 R4(α)  = 1.02(α)2 – 2.65(α) + 4.01 
C5(α) = 6.6(α)2 – 22.9(α) + 25.4             5 
 R5(α)  = 1.3(α)2 – 3.25(α) + 4.33 
C6(α) = 7.8(α)2 – 26.5(α) + 27.8             6 

 R6(α)  = 1.23(α)2 – 3.14(α) + 4.29 
C7(α) = 5.4(α)2 – 18.7(α) + 22.1             7 
 R7(α)  = 1.3(α)2 – 3.38(α) + 4.58 
C8(α) = 7.8(α)2 – 26.5(α) + 27.8             8 
 R8(α)  = 1.3(α)2 – 3.38(α) + 4.58 
C9(α) = 5.4(α)2 – 18.7(α) + 22.1             9 
 R9(α)  = 1.05(α)2 – 2.5(α) + 4.01 
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The FCRF method calculations described in this paper apply to floor structures supported by 
external and internal columns.  Future work will include analyses for floor panel 
configurations having external and internal wall supports and those with external wall and 
interior columns.   

In conclusion, this research will exploit an opportunity to develop empirical guidelines for the 
dynamic behavior of post-tensioned floors, partially through the use transient dynamic 
analysis.   
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