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Abstract 

 

In this paper, a wave propagation model is developed to investigate the wave propagation in 

fluid-filled steel pipe. Based on the Kennard shell equations the investigation is achieved 

under the conditions of coupling between the shell elastic acoustic field and the interior fluid 

acoustic field. Tests are conducted on fluid-filled pipeline blockage detection. An active 

acoustic source is used to generate acoustic pulse waves into the pipe. The position of the 

blockage can be obtained from the reflected transient signals. Smoothed Pseudo Wigner-Ville 

distribution method (SPWVD) has been used to extract the time and frequency features of the 

propagating waves in the coupling system. Experimental results demonstrate that the 

proposed approach and SPWVD are effective in detecting the position of the blockage.  

1. INTRODUCTION 

Pipeline leakage detection has been under investigation for the past decades. Significant 

economic and environmental consequences can be caused by even a small leak.  Acoustic 

leakage detection methods have shown to be effective and are in common use in the water 

industry[1]. The most useful technique for locating a leak has been the cross-correlation of 

leak noise at two locations along the pipe[2, 3]. For the correlation technique to be effective, 

the propagation wave speeds and wave attenuation must be known a priori. Because of the 

coupling effect between the pipe wall and the contained fluid and surrounding medium, wave 

propagation behavior is rather complicated[4].  

The analysis of harmonic wave propagation in piping systems has been studied by many 

authors. The waves in a fluid filled pipe, i.e., the solutions to the coupled equations of motion 

were originally investigated by Fuller and Fahy[5]. Real, imaginary and complex 

wavenumbers in all circumferential modes are calculated, and physical interpretations of the 

results have been offered. A concise expression for the shell power flow has been derived by 

Fuller [6], and energy distribution in the fluid-shell coupled system for each propagating wave 

of azimuthal order n has been evaluated. The analysis was then extended by Fuller to cope 

with forced response in infinite pipes that are excited by a radial line force[7] and by 
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monopole sources in the fluid[8]. Brevart and Fuller[9] later derived the time domain 

response of an infinite fluid-filled pipe to an impulsive line force of various azimuthal 

distributions. The energy exchange between the structure and the fluid as the various waves 

propagate through the system was given. Pavic[10] derived more exact expressions of the 

power flow in shells, and investigated the fluid-structure interaction in relatively low 

frequencies by approximate dispersion equations. Muggleton, et al[11] have investigated the 

wavenumbers within elastic, water-filled buried pipes and the radiation from submerged 

shells has been concerned. The simplified forms of Kennard’s equations for a thin-walled 

shell have been used and are only valid below the ring frequency. 

The present work uses the exact forms of Kennard’s shell equations which can predict 

wavenumbers in all circumferential modes. No approximations are made for the computation 

of the Bessel functions and the Hankel functions so the application can be extended to 

relatively high frequency range. A novel way to detect leakage or blockage has been used in 

the present paper. An active acoustic source is used to generate acoustic pulse waves into the 

pipe. The position of the leakage/blockage is obtained by the reflection transient signals. It is 

easier for the sound generator to activate high frequency signals, so the frequency distribution 

of the pulse generated by the sound generator concentrates on the high frequency region.  

Tests for wavespeed and blockage in fluid-filled pipes are conducted. The reflection 

signal from the blockage is usually very weak unless the acoustic source is very strong or the 

blockage is very large. General methods such as cross-correlation method appear not ideal in 

detecting the position of the blockage. SPWVD is used to extract the time and frequency 

information of reflection transient signal which reveals the position of the blockage inside the 

pipe[12].  

The time-frequency method has become a powerful method for the analysis of transient 

signals. The time-frequency has variable time-frequency resolution over the time-frequency 

plane by providing good time resolution at high frequencies and good frequency resolution at 

low frequencies[13]. Among various time-frequency distribution methods one of the most 

studied is the Wigner-Ville distribution. The concept was first introduced by Wigner and was 

re-introduced by Ville. Like Fourier transform, it requires that the time series under analysis 

be known at all times. The Wigner-Ville is the Fourier transform of the signal’s 

autocorrelation function with respect to the delay variable. It can be thought of as a short-time 

Fourier transform where the windowing function is a time-scaled, time-reversed copy of the 

original signal[14-16]. Smoothed pseudo Wigner-Ville distribution is used in the present 

paper to evaluate the time and frequency component of the transient signal. 

2. WAVENUMBER EQUATIONS 

Kennard’s equations are used in the present paper which describe the free, simple harmonic 

motion of a thin-walled cylindrical shell[17]. 

The normal mode shapes assumed for the displacements of the shell wall, associated 

with an axial wavenumber nsk , are 
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The internal pressure of the fluid is given by:  
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The radial wavenumber r

fsk  is related to the fluid wavenumber nsk  by 

 

2 2r

fs f nsk k k= −                             (5) 

 

At the boundary, the radial displacement of the fluid equals to the shell displacement. 

Pressure coefficients can be obtained by equating the radial velocity of the fluid at the shell 

wall to the radial velocity of the shell wall: 

 
2 / ( )r r

fs f ns fs n fsP W k J k aω ρ ′=                                        (6) 

 

Substitution of equations (1-6) into Kennard’s equations gives the equations of motion 

of the coupled system in terms of the amplitudes of the three displacements and the acoustic 

pressure. The free vibrations of the coupled system can be represented in a matrix form[5]. By 

setting the determinant of the amplitude coefficients of the matrix to zero, the wavenumbers 

for a free motion solution can be found. 

3. NUMERICAL SOLUTION 

Expansion of the determinant given by the matrix provides the system characteristic equation. 

Due to the non-linear characteristics of the fluid loading term in the coupled equation, 

numerical methods have to be used to find the roots of the equation.  Kumar and Stephens[18] 

provided an contour integration technique to find the roots inside the contour. Then Newton-

Raphson method was utilized to calculate the exact root from the initial approximate location 

of the root given by the contour integration technique. Fuller[5] used a simpler and quicker 

method to find the approximate locations of the roots at low frequencies by using the in vacuo 

shell dispersion results as the initial value. Then Newton’s rule was used to find the complex 

roots. 

Note that Newton’s method need to calculate the derivative of the fluid loading term, 

which will be cumbersome for the present paper. A simplex optimization method was used to 

find the complex solution of  equation as an alternative[19].  

The dispersion curves are obtained for a thin walled fluid-filled pipe. The properties of 

the shell and fluid are given in Table 1. Thickness/radius ratio of the pipe is 0.05. Results are 

presented in Figures 1, 2 for circumferential modes of n=0 and n=1 which exhibit all the 

general characteristics of wave propagating.  
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Table 1. Material properties. 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
-8

-6

-4

-2

0

2

4

6

8

10

12

Real(-s6)

s5

s4

s3

s2

s1

 

 

A
x
ia

l 
w

a
v
e

n
u
m

b
e

r

Im
a

g
in

a
ry

 k
n

s
a
  
  
  
  
  
  
  
  
  
  
R

e
a
l 
k

n
s
a

Non dimensional frequency

 
Figure 1. Wavenumbers for a fluid-filled pipe in the breathing mode. 

Figure 1 shows wavenumbers in the breathing mode. The branch s1 is a fluid type wave 

at low frequencies. The fluid is unable to cause the shell to vibrate because of long axial 

wavelength. At very high frequencies, the shell and fluid motions become strongly coupled 

and this branch approaches the in vacuo flexural solution [5, 20]. The branch s2 is a 

structural-type wave at low frequencies, close to the in vacuo extensional solution. Because of 

the heavy fluid introduced in the system and the induced coupling phenomenon, this branch 

turns into a pressure release duct solution at high frequencies. The branch s3 is the torsional 

shell wave which is not coupled to the fluid motion. Wavespeed of this wave is constant at all 

the frequencies as can be clearly seen in Fig 2. The s4 wave is a decaying wave with pure 

imaginary wavenumbers at low frequencies and cuts on at 0.82Ω =  to a propagating wave. s4 

is close to an extensional in vacuo shell wave initially and the s5 wave is close to a fluid wave 

in a tube initially. The s6 wave represents evanescent motion with attenuated wave amplitude 

in the axial direction along the shell wall. The physical meaning of the wavenumbers for a 

fluid filled in vacuo pipe has been discussed more fully by Fuller[5].  

Material 
Young’s modulus 

( 2/N m ) 
Poisson’s ratio Density ( 3/kg m ) 

Free wavespeed 

(m/s) 

Steel 1019.2 10×  0.3 7800 5200 

Contained fluid --- --- 1000 1500 
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Figure 2. Wavenumbers for a fluid-filled pipe in the breathing mode. 

Figure 2 shows the wavenumbers in the beam type mode. There exists only one beam 

type branch s1 at low frequencies. s2 wave cuts on at 0.592Ω =  and this wave is close to the 

first rigid walled duct mode with circumferential order n=1. s3 wave cuts on at 0.681Ω =  and 

this wave is close to the torsional shell motion. This wave changes its behavior to a fluid-type 

wave when it encounters branch s4. s5 wave cuts on as an extensional shell wave and it 

converts into a duct type wave at higher frequencies. 

4. EXPERIMENTAL TEST 

Several tests are conducted to get the wavespeed in the water-filled steel pipe and to pinpoint 

the position of the blockage. The configuration of the test rig is shown in Figure 3. Two 

hydrophones are mounted inside the water close to the two ends of the pipe without touching 

the pipe wall. The distance between the two sensors is 6.6 meters. The pipe has an internal 

diameter of 81mm and a thickness of 4 mm.  

A pulse signal generated by the computer has been used to drive the sound generator. 

This impulse sound is received by the microphones in the form of transient signals. SPWVD  

is used to find the time and frequency characteristics of the signals. The frequency 

components of the pulse can be obtained from figure 4. It is clear the high frequency 

component carries significant portion of the pulse’s energy. So these high frequency 

components are used for wavespeed estimation and blockage detection. Environmental noises 

are concentrated mainly at the low frequency region. By choosing high frequency component, 

the effect of the noise can be avoided greatly.  The wavespeeds of different waves can be 

calculated by /c d τ= . Where d is the distance 6.6 meters from hydrophone 1 to hydrophone 

2, and τ  is the traveling time of acoustic waves with different frequency components. 

Dispersion characteristics can be observed in figure 4 and figure 5. As illustrated in the 

previous section, wavenumbers are functions of frequency, i.e., wavespeeds are functions of 
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frequency. Thus acoustic waves with different frequency component will be traveling at 

different wavespeeds. Figure 8 shows the pulse traveling time at different frequencies. The 

pulse time-shift can be observed in signal recorded by hydrophone 2.  

Figure 6 shows the time-frequency distribution of the reflection signal of the s2 fluid 

type wave when a blockage is inside the pipe. The blockage is a screw about 3 centimeters in 

diameter and 2.3 meters away from hydrophone 1. The result has been magnified to show 

both the initial and reflection signals together. Based on the result, the position from the 

blockage to hydrophone 1 can be calculated by: / 2bd c τ= × . τ  is measured from the front 

wave plane of the reflection signal to the front wave plane of the initial signal recorded by 

hydrophone 1. 

Table 2 shows the calculated blockage distance at different positions. The reflection 

signal decreases with distance as the distance from blockage to the acoustic source increases. 

At position 5 and 6, the reflection signal from the blockage mixes with the reflection signal 

from the water-air surface at the other end of the pipe, thus makes the calculated distance 

inaccurate.  

 

 

 
Figure 3. Test rig configuration. 

 
Figure 4. SPWVD of the signals from hydrophone 1 and hydrophone 2. 
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Figure 5. Dispersion charateristics of the acoustic waves. 

 
Figure 6. SPWVD of the signal from hydrophone 1 for blockage detection. 

 

Table 2. Calculated and actual distances from the blockage to hydrophone 1. 

Blockage position 1 2 3 4 5 6 

Actual distance 1.3 2.3 3.3 4.3 5.3 6.3 

Calculated distance 1.197 2.238 3.57 4.477 6.256 6.6 

5. CONCLUSION 

In this paper, axisymmetric waves in a fluid-filled, steel pipe have been studied. Dispersion 

curves for various waves in the circumferential breathing mode and beam type mode have 

been obtained. General characteristics of waves propagating in fluid-filled buried pipes have 
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been exhibited.  

A novel way to detect leakage/blockage has been used based on the theoretical 

investigation. An acoustic source was used to generate acoustic waves into the pipe system. 

The position of the leakage/blockage was obtained from the reflection signal of the injected 

acoustic wave. Smoothed pseudo Wigner-Ville distribution method has been used to reveal 

the position and frequency components of the pulse. Wavespeeds are obtained with relation to 

different frequencies. Experiments have shown calculated blockage distance matches well 

with actual blockage distance.  
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