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ABSTRACT 

First, it is shown that the use of SEA coupling factors derived for the coupling of semi infinite 
systems is consistent with coupling power proportionality. This demonstration is axiomatic, 
relying on a set of postulates. It is useful in teaching SEA, as it illustrates concepts and 
assumptions commonly made. It might be useful for research aiming for a better set of 
postulates upon which a statistical energy method can be built. Second, the wave motion in 
double walls is investigated. A new SEA formulation is presented in which each element 
describe one kind of coupled cavity-wall wave motion. This formulation obsoletes the non-
resonant transmission paths and compared to classical formulations, it improves results at 
frequencies around and a bit above the double wall resonance. 

1. INTRODUCTION 

It is this author’s belief that Statistical Energy Analysis (SEA) has not reached its full 
potential, yet. This method for vibroacoustic prediction could be further developed for ‘virtual 
prototyping’ of highly developed products. It could be more used in engineering practise 
where often decisions are based on analysis that need not be too precise. Most important, the 
results of dynamic calculations and measurements could be better used if the understanding of 
the potential flow model for vibroacoustic energy transport was more widespread. To quote 
Ove Bennerhult: “there is nothing more practical than a good theory”. 
 To promote and advance SEA there is an educational need, less expensive software 
need reach the market and more competent software and modelling procedures are wanted. 
This note aims for a contribution to the first and third of these objectives. To that end, Section 
2 presents an axiomatic demonstration of the SEA power balance equations, which is useful 
for illustrating concepts and assumptions commonly made in SEA. Section 3 presents a new 
double wall formulation, where the elements are identified from a wave analysis.  
 SEA is built upon the Coupling Power Proportionality (CPP) hypothesis stating that the 
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coupling power between two directly connected elements is proportional to the difference in 
their modal energy. Most often, the constant of proportionality is equated to its travelling 
wave estimate (TWE), which is calculated for the coupling of infinite or semi infinite 
structures. Some fourth year students of the MWL/KTH found this practise to be a gross 
approximation. To improve their understanding of SEA the demonstration in Section 2 was 
made. 
 Double walls are frequently used in buildings, vehicles and aircraft and continue to be 
of interest for research [1-4]. The classical SEA double wall formulation describes the walls 
and the cavity as three separate elements and includes a direct, non-resonant, path from a 
room to the cavity [5-6]. Here, the wave motion of the coupled cavity-wall structure is 
investigated. In a frequency region between the double wall resonance and a frequency at 
which the cavity depth is approximately half an acoustic wavelength, there is only one kind of 
wave in the fluid and two flexural waves in the walls which induces some near field motion in 
the fluid. The fluid wave includes mass impeded wall motion and is super sonic so it radiates 
well into a connecting room. Based on these findings, a new double wall SEA element is 
derived, which, compared to the classical formulation, improves results at frequencies around 
and a couple of octaves above the double wall resonance. 

2. AN AXIOMATIC DEMONSTRATION OF SEA 

It is well known that SEA cannot be but an approximate method. Woodhouse shows that 
Lyon and Scharton’s two-oscillator result cannot be extended to three oscillators [7]. Langley 
shows that an exact energy balance model is similar to SEA only if the dependent variables 
(the modal energies) are re-defined and indirect couplings are allowed [8]. Similarly, 
Finnveden shows that analytically calculated ensemble averaged energies in a three-element 
structure are related as in SEA only if indirect coupling is allowed [9].  One strand of SEA 
research has therefore been focused on approximating exact results for ‘weak coupling’, e.g., 
[9-11]. A review of various coupling strength definitions is presented in reference [11]. 
 Another strand derives the equations based on postulates; e.g., in the modal approach to 
SEA it is sometimes postulated that two-oscillator results apply on a mode-to-mode basis for 
the coupling of sets of oscillators [12-13]. A similar approach is taken here: based on a set of 
postulates for the vibroacoustic fields of coupled structures, it is shown that the use of 
travelling wave estimates is consistent with CPP. 

2.1 The ‘standard’ SEA formulation 

Figure 1 illustrates a structure sub divided into three elements, of which Element 1 is excited 
by an external source that provides a steady state vibroacoustic power ,1inP  in a frequency 

band of width ωΔ . An SEA model of this structure’s response is based on the energy 
conservation principle, which states that the power injected to Element i by external sources 
equals the power dissipated within this element ,d iP  plus the net power transmitted to other 

elements ( ),i j
cP : 
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 The dissipated power is normally for linear losses described by 

 ,d i i iP Eη ω= , (2) 

where ω  is frequency, η  is loss factor and E  is the vibroacoustic energy in the considered 
frequency band. This engineering approximation is quite alright for homogenous structures in 
which the response is ‘reverberant’. An example of a structure for which Equation (2) does 
not immediately apply is a radial car tyre. The flexural motion of the tyre wall mainly strains 
the rubber, which is highly damped, while the in plane motion engages the steel wires, which 
are lowly damped and dependent on the mode shape, losses vary in between .01η =  and 

.25η =  [14]. Even so, if the material characteristics are known, for any given wave form, the 
dissipated power is as in Equation (2) proportional to the wave’s energy. The same applies for 
any given mode shape if, furthermore, the mode has resonance in the considered frequency 
band and we can assume that the strain and kinetic energies are approximately equal.  
 The law of energy conservation is exact and Eq. (2) for the dissipated power is an 
established engineering approximation. The formulation of the coupling power is therefore 
the large obstacle in any SEA. It is assumed proportional to the difference in energy per mode 
in directly connected elements. This Coupling Power Proportionality (CPP) is here written as 

 ( ) ( ) ( ), , ˆ ˆi j i j
c i jP C e e= − , (3) 

where the ‘modal power’ is given by 

 ˆ ,i i i i ie E n n N ω= = Δ Δ , (4) 

n  is the ‘modal density’, NΔ  is the number of modes in the considered frequency band and 
C  is the ‘modal power conductivity’, or in any given context, simply the conductivity. This 
non dimensional parameter is defined by Eq. (3) and is related to the standard SEA coupling 
loss factor, ,c ijη , 

 ( ),
,

i j
c ij iC nη ω= . (5) 

 Given the definition of the modal power above, the dissipated power is  

 ˆ,dP M e M nηω= = . (6) 

The non-dimensional modal overlap factor, M , is a very important system characteristic. One 
reason for using the conductivity, and not the coupling loss factor, is that the conductivity 
relates directly to the modal overlap factor. Another reason is that it saves ink. 
 In possibly all practical applications of SEA, the conductivity is equated to its travelling 
wave estimate. This estimate is evaluated, as illustrated in Fig 1, for one junction at a time 
while disregarding the rest of the structure. Moreover, one element is directly excited and the 
receiving elements are extended towards infinity. Thus, the TWE of the conductivity is given 
by  
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→

= . (7) 

It is also assumed that following power reciprocity relation holds 

 ( ) ( ), ,i j j i
e eC C= . (8) 

 In parallel to the damping loss factor in Eq (2), the TWE can always can always be 
evaluated for any given vibroacoustic field in the first element. Moreover, it relates easily to 
measures of vibroacoustic transport such as radiation efficiency, transmission loss and 
reduction index and can therefore be calculated or measured in a standardized manner; this is 
a great advantage.  
 Methods such as the one indicated by Eq (7) are below termed ‘one-way’ methods and 
are commonly used in engineering practise, see, e.g., [15-16]. In a one-way procedure, first 
the response of one element is calculated, possibly accounting for coupling losses, and, then, 
the responses of connected elements are evaluated considering the given vibroacoustic field in 
the first element.  

 Figure 1. Left, illustration of three-element structure; right, evaluation of TWE. 
 
It seems as if the TWE is a reasonable approximation of the conductivity, defined by Eq. (3), 
if the ‘Smith-type’ criterion ( ), 1i j

jC M <<  applies. In what follows, however, it is 

demonstrated that the TWE is fully consistent with the CPP, if the response of the external 
excitation is not correlated with the scattered response of the elements. This criterion is more 
likely to be fulfilled for random structures but the required degree of randomness is somehow 
related also to the coupling strength, as will be discussed.           
 

2.2 Demonstration of CPP for Two-element structures 

Consider the two-element structure illustrated in Fig 2. The first element is excited by an 
external forcing 1F  which provides a steady state input power ,1inP  in the considered 

frequency band. The structures response is given by linear equations of motion and is thus 
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equally given by the superposition of the responses of two structures as seen in Fig 2.  
 It might be difficult to find the ‘scattering’ force field 2F , giving rise to the boundary 
reflections in element 2. In some instances it is, however, possible to make a statement of the 
scattered power. To this end, the following postulates are made: 
 
1) The response is reverberant, meaning that the kinetic and potential energies are on 
average equal. Also, the vibroacoustic energy is roughly equal across the element, which 
requires that the element is quite homogenous and that 1gL cηω < , where L  is a typical 
dimension and gc  is the group velocity. 

2) The coupling is conservative and the amount of power dissipated in the near fields of 
the excitations, boundaries, and other irregularities is not significant. Also, the direct fields of 
the excitation and the coupling do not dissipate any significant amount of power. 
3) The power ,1inP  injected by the external forcing 1F  is not altered when the indirectly 

excited element is extended towards infinity. 
4) The scattered force field, 2F , is uncorrelated to the external forces 1F . 

Figure 2. Top, original problem (0); bottom, superimposed problems (1) and (1b) 
 
Postulate 1 defines the kind of response that SEA might be able to describe. Postulate 2 is 
standard in SEA and means that all dissipation can be attributed to the reverberant fields in 
the elements. Postulate 3 is one instance of a weak coupling assumption: in reference [8] 
Langley says that coupling is weak if the real part of the point mobility (Green’s function) is 
not altered if an element is connected to another element. This criterion is fulfilled for spring 
coupled structures that have random properties, if the ‘modal interaction strength’  

 
( ),2 i j
e

i j

C
M M

γ
π

= , (9) 

is less than unity [11]. Finally, Postulate 4 is necessary for the analysis that follows. It might 
be relevant if the average response of structures with random, or unknown, properties is 
sought. It is immediately clear that Postulate 4 cannot be correct if the structure’s response is 
given by global modes that are well separated in frequency, since response and scattering 
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defined by one mode must be correlated. Thus Postulate 4 requires not only structural 
randomness but also ‘local’ response and thus weak coupling [11]. 
 Applying the postulates and the law of the energy conservation for element 1 yields 

 ( )( ) ( ), 1
,1 1 1̂

i j
in eP M C e= + , (10) 

where ( )ˆ j
ie  is the modal power in element i  given by the vibroacoustic problem j . Similarly, 

the energy conservation for element 2 yields  

 ( ) ( ) ( ) ( )1 1 , 1
2 ,2 1ˆ ˆ0, b i j

in ee P C e= = , (11) 

since the energy transferred to element 2 in problem (1) is finite while the modal density is 
infinite. Accordingly, the power injected by the scattering forces 2F  is given by energy 
conservation and the postulates.  

Figure 3. Power superposition, step 1. Top original problem (0); bottom, problem (1) and 
(1b). 
 
It is, not yet, possible to solve the vibroacoustic problem (1b). So, to proceed, as in Fig. 4, 
Postulates 3 and 4 need be amended and a fifth postulate is needed: 
 
3b. The power injected by the boundary force field 2F  is not altered when element 1 is 
extended towards infinity. 
4b. The boundary force field ( )2

1F , needed to make step 2 a valid superposition, is 
uncorrelated both to the external force field 1F  and the boundary forces 2F .  
5. The power reciprocity (8) holds. 
 
Applying these postulates, energy conservation yields 

 ( ) ( )( ) ( )2 , 2
,2 2 2ˆ

i j
in eP M C e= + , (12) 

 ( ) ( ) ( )2 , 2
,1 2ˆ
b i j

in eP C e= . (13) 
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The vibroacoustic problem (2b) is similar to the original problem (0) except for that the power 
is injected by another set of sources ( ( )2

1F  in stead of 1F ) that provides a smaller amount of 
input power.  
 It is conceivable that the force fields ( )2

1 2 1,  and F F F  may be uncorrelated if the structure 
has random properties and the elements’ responses are given by diffuse wave fields or local 
modes. If, additionally, the power injected by the scattered force field ( )2

1F  is much smaller 
than the one injected by the external force 1F , the equations above provide the required 
solution. If this is not the case, the vibroacoustic problem (2b) needs to be solved and one 
option is then to extend the scheme of successive approximations, outlined above, ad 
infinitum. A sixth postulate is then needed 
 
6. The postulates 3-5 are valid also for further successive approximations. 
 
This postulate is rather suspicious. If, nevertheless, it is accepted, the following scheme 
applies 

 ( ) ( ) ( ) ( ) ( ) ( ) T1 3 3
1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ; n n ne e⎡ ⎤= + + + = ⎣ ⎦e e e e e…  (14) 

 ( ) ( )1ˆ ˆn n−=e K e  (15) 

 ( ) ( ), ,0; ;i j i j
ii ij e i i i eC D D M C= = = +K K  (16) 

 ( ) [ ] ( )11 12ˆ ˆ ˆ−⎡ ⎤= + + + = −⎣ ⎦e I K K e I K e…  (17) 

where I is an identity matrix and the last equality is valid since the magnitudes of K’s eigen 
values are both less than unity. Finally, Eq. (17) is first pre multiplied by the matrix [ ]−I K  
and then by the diagonal matrix D  with entries, ii iD=D , and it follows that 

 [ ] ( )1ˆ ˆ− =D I K e D e , (18) 
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Figure 4. Power superposition. Top problem (1b); bottom, (2) and (2b).
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which is 

 
( ) ( )

( ) ( )

1,2 1,2
1 1 ,1

1,2 1,2
22

ˆ
ˆ 0

e e in

e e

M C C e P
eC M C

⎡ ⎤+ − ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− + ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦
. (19) 

This is the standard SEA equation for a two-element structure and it is thus demonstrated that 
the application of the travelling wave estimate (7) is fully consistent with the coupling power 
proportionality (3), if the postulates 1-6 are fulfilled.  

2.3 Multi-element structures 

The successive approximation scheme described above applies also for multi-element 
structures; a three element structure is illustrated in Fig 5.  

The superposition scheme indicated in the figure is applied for a structure with m elements, 
upon which the successive modal powers are given by 

 ( ) ( ) ( ) ( ) ( ) ( ) T1
1 2ˆ ˆ ˆ ˆ ˆ ˆ;n n n n n n

me e e− ⎡ ⎤= = ⎣ ⎦e K e e … , (20) 

 ( ) ( ), ,0; ;i j i j
ii ij e i i i e

j ì

C D D M C
≠

= = = + ∑K K  (21) 

where it is understood that ( ),i j
eC  is zero unless elements and i j  are directly connected. By 

definition: 1ij
j ì≠

<∑ K , and it follows from Gerschgorin’s theorem [17, p 209] that the 

magnitudes of K’s eigenvalues are all less than unity. The Eqs (17) and (18) therefore apply 
equally for many-element structures. In particular, for a three element structure, we have  
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Figure 5. Power superposition for three elements
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1,2 1,3 1,2 1,3
1 1 ,1

1,2 1,2 2,3 2,3
2 2

1,3 2,3 1,3 2,3
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ˆ
ˆ 0
ˆ 0

e e e e in

e e e e

e e e e

M C C C C e P
C M C C C e

eC C M C C

⎡ ⎤+ + − − ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + + − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + + ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

 (22) 

2.4 Discussion 

The postulate 6 cannot be valid ad infinitum, as was assumed above. It isn’t conceivable that 
the successive scattering force fields are incoherent for ever. Therefore, CPP is valid only if 
the successive approximation scheme converges rather quickly. One might conclude from the 
analysis above that the convergence is quick if the Smith criterion ( ), 1i j

jC M <<  is fulfilled 
for all connections and all elements. This conclusion, however, is not certain, since we cannot 
infer all characteristics of an ensemble from the characteristics of the ensemble average.  
 In a dynamic analysis of spring coupled structures with random properties, it was found 
that, for all members of the ensemble defined and for all frequencies of vibration, a similar 
successive approximation scheme converges if the modal interaction strength, γ , of Eq. (9) is 
less than unity [11]. Also, Finnveden presented exact ensemble averaged coupling powers and 
modal powers in one-dimensional systems with random properties [18]. If the modal 
interaction strength, γ , is small, the CPP (3), using the one-way conductivity, applies for 
these ensemble averages and, furthermore, the indirect couplings in three-element structures 
are negligible. These findings were later repeated in [9, 19] showing that the Smith criterion 
[20] is not the decisive criterion for the usefulness of standard SEA. 

3. THE SEA OF A DOUBLE WALL 

One of the most drastic examples of an SEA based on travelling wave estimates is Price and 
Crocker’s double wall formulation [5]. This model relies on Smith’s wonderful result [21] 
that the radiation of sound from a mode in a structure to an infinite acoustic space is related to 
the mode’s reception of vibroacoustic energy from a diffuse sound field by the modal power 
reciprocity relation (8). The model also relies on Price and Crocker’s radical assumption that 
the radiation into a cavity of depth d, which is of the order of the acoustic wave length, or 
even smaller, is described equally as the radiation into semi-infinite space.  
 The double wall formulation considers a partition of size x yS L L= ×  consisting of 
two plates separated by a distance zL d= . For both plates, the coincidence frequencies, at 
which the flexural wavelength of plate i  equals the acoustic wavelength, occurs at a rather 
high frequency, ,c if . In a lower frequency regime, the plates’ impedances to acoustic forcing 
are therefore predominantly of mass character. The double wall resonance, dwf , is mainly 
determined by the wall’s masses and the compressional air stiffness of the cavity, all per unit 
area; it is approximately given by  

 
1 2

1 1
2dw

cf
dπ μ μ

= +  (23) 

where c  is the sound speed and 0i i it dμ ρ ρ=  and andi itρ  are the density and wall 
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thickness of plate i and 0ρ  is the air density.  At frequencies lower than dwf , the plates are 
assumed to move in phase and the transmission loss is approximately given by the mass law 
employing the total mass of the partition. An improved low frequency SEA model would also 
account for resonant motion in the frame-plate structure but this will not be pursued here.  
 At frequencies above dwf , Price and Crocker define five SEA elements, each describing 
the response in one of the sub structures: 1) sending room; 2) plate 1; 3) cavity; 4) plate 2; 
5) receiving room. The sound transmission from a room, through a plate, to the cavity, or vice 
verse, is given by the resonant transmission, where the sound field excites the plate 
resonances which in turn radiate into the cavity. It is also given by the mass law, defined by 
the response of the non-resonant, mass-impeded, modes of the plate. This latter transmission 
path does not exist above the coincidence frequency.   
 Craik and Smith [6] present measurements and calculation of the sound transmission 
through double wall partitions. The measurement data of Fig 15 in reference [6] are used here 
for illustration and for validation of a new model.  The walls studied are made of plasterboard, 
and in one case of chipboard, which are joined by wooden frames; material and geometrical 
data are given in [6, Table 2]. Craik and Smith base their SEA model on the Price and 
Crocker formulation and include the plate-plate coupling via the frames. These frames are 3 m 
long and are modelled as Euler beams. They are erected in the vertical direction at 40 cm cc 
distance and the plates are nailed to the frames at 30 cm distance. The frame-plate 
transmission is modelled as point coupling.  
 Figures 6 shows measured and calculated sound reduction indexes for double walls with 
a cavity depth of 100 mm; also 50 mm and 150 mm cavities are considered. The double wall 
resonances occur at 123 Hz, 87 Hz and 66 Hz, respectively, while the cavity depth equals half 
an acoustic wave length at 3.4 kHz, 1.7 kHz and 1.1 kHz. The coincidence frequency is in the 
3.15 kHz third octave band. As can be seen, the Price and Crocker model, as interpreted by 
Craik and Smith, makes a god job at lower frequencies, where the partition is modelled as one 
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Figure 6. Sound Reduction Index, 100 mm double wall. Solid blue line, 
measured [6]; Dotted black line, old model [6]; Dashed red line, new model.
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single plate; particularly so as the mode count is rather low at these frequencies. The model is 
also very god at higher frequencies when the cavity depth is not too small compared to the 
acoustic wave length. At intermediate frequencies, there are consistent errors, which increase 
with decreasing frequency. (These errors were reduced in reference [1].) 
 The double wall resonance is not seen in the measured sound reduction index (SRI) 
while there is a plateau, extending approximately an octave above this frequency. The dip in 
the 160 Hz band, seen for all cavity depths, might be caused by an increase in the plate 
mobility as in this band the distance between the frames is a bit more than half a flexural 
wave length in the plate. After the plateau, the reduction index starts increasing by 9 dB per 
octave. Similar characteristics have been observed by the current author for other building 
structures as well as trimmed vehicle and aircraft structures. In the next sub section, the wave 
motion in a double wall structures is investigated in more detail to gain understanding of the 
vibroacoustic motion of double walls. 

3.1 Wave motion in double walls 

The waveguide Finite Element (FE) method is a versatile tool for the investigation of wave 
motion in structures that have constant material and geometrical properties along one 
direction [22-26]. Using this method, the motion’s dependence of the cross sectional 
coordinates is approximated with FE polynomial shape functions, upon which follows a set of 

coupled ordinary differential equations describing wave propagation and decay along the 
structure. Figure 7 shows the FE mesh used for the study of the wave propagation in the 100 
mm double wall. The plaster boards are described by three-node quadratic deep shell elements 
and the fluid by nine-node Lagrange type elements. All motion in the y-direction is blocked 
so the model is, in effect, two dimensional.  
 Figure 8 shows the dispersion curves for the double wall. The two straight curves at the 
bottom are the quasi longitudinal waves in the two plates. These have slightly different wave 
numbers as the plate have different material properties. (This is an example of good design; it 
is also an example of professor Craik’s good understanding of SEA.) The two straight lines at 
the top are the flexural waves of the plate. Perhaps surprisingly, the flexural waves’ dispersion 
relations are close to those for the uncoupled plates, also at frequencies below the double wall 
resonance. This is so because the fluid mass loading is low compared to the plates’ mass and 
because the fluid cannot transfer any shear stress. The wave forms, however, exhibit coupling 

Figure 7. Waveguide FE mesh for 100 mm double wall
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between the plates and the plates and the fluid, as can be seen in Figs 9. At low frequencies, 
one of the flexural waves is anti symmetric and the other is symmetric while the plate 
amplitudes are roughly equal. Above the double wall resonance, the waves are localised to 
either of the plates while the amplitude of the other plate decreases rapidly with frequency.  
 The waves that ‘cut-on’ (start propagating) at 87 Hz and 1.7 kHz are predominantly 
fluid waves that as frequency increases approach the dispersion curve for free acoustic waves. 
The wave form for the first of the predominantly fluid waves is shown in Fig 10. For all 
frequencies, the fluid motion is almost plane with some motion of the walls, which decreases 
with frequency. Most important for the formulation of a new SEA element: the fluid wave 
does not exist below the double wall resonance and it is super sonic, so the associated wall 
motion radiates well.  

Figure 8. Dispersion curves for 100 mm double wall. Blue dots, wave guide FE 
solutions; dashed red line, free acoustic wave; solid black line, uncoupled structural 
waves, top flexural and bottom longitudinal waves.
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Figure 8. Dispersion curves for 100 mm double wall. Blue dots, wave guide FE 
solutions; dashed red line, free acoustic wave; solid black line, uncoupled structural 
waves, top flexural and bottom longitudinal waves.
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k = 1.7 1/m; bottom left f = 116 Hz, k = 11.2 1/m; bottom right, f = 136 Hz, k = 11.2 1/m;
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Figure 9. Wave forms for flexural waves. Top left, f = 2 Hz, k = 1.7 1/m; top right, f = 2.9 Hz, 
k = 1.7 1/m; bottom left f = 116 Hz, k = 11.2 1/m; bottom right, f = 136 Hz, k = 11.2 1/m;



ICSV14 • 9-12 July 2007 • Cairns • Australia 

 13

3.2 A new double-wall element 

3.2.1 Modal density 

The waveguide FEM describes most accurately and conveniently the double wall wave 
motion. It is, however, possible to describe the waves analytically in a lower frequency 
domain where the wall motion is mass impeded. These analytic expressions are detailed here 
for reference. The structure is isotropic so the wave motion at an arbitrary wave heading in the 
x-y plane of the wall are described by the following equations 

 ( ) ( ) ( )
2 2

2
02 2 0; , i ,a j j j

p p k p p x z d u x z
x z

ωρ μ∂ ∂
+ + = = ±

∂ ∂
� � � � �  (24) 

where 1 20;z z d= = , ak cω= , u�  is the rms particle velocity and the minus sign applies 
at 2z . The wave solutions to Eqs (24) are given by 

 ( ) ri
0 2sin sin e x

r r rp p z d z κγ μ γ γ= +� � , (25) 

 ( ) ( )2 2Rer a rkκ ω γ= − . (26) 

The rγ  are solutions to a transcendental eigenvalue problem, defined by Eqs (24), which for 
the double walls considered here have solutions that are well approximated by 

 0 ;2 , 1dw rf c r d rγγ π π= = ≥ , (27) 

so, in this approximation rγ  does not depend on frequency. For each of these eigenvalues, 
there is a two-dimensional motion in the x-y plane. The number of modes below a 
frequencyω  is given by 

 ( ) 2 4rN Sω κ π= . (28) 

It follows, the average modal density for the plane cavity-wall modes, in a band of width 
u lω ω ωΔ = − , is given by 

 ( ) ( )( )2 2
0 0 4cw u ln Sκ ω κ ω π ω= − Δ , (29) 

while the total modal density for the oblique cavity modes is 
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Figure 10. Wave form of cavity-wall wave. Left, 87 Hz; middle 126 Hz; right 840 Hz 
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 ( ) ( )( )2 2

1

4co r u r l
r

n Sκ ω κ ω π ω
=

= − Δ∑ . (30) 

3.2.2 Conductivity 

The power radiated from the resonant vibrations of one of the walls to a semi-infinite room is  

 ( ) ( ), ,2 ˆp r p r
rad o o p p pP c S v c n e mρ σ ρ σ= =�  (31) 

where ˆ,  and p p pn e m  are the modal density, modal power and the mass per u.a. of the wall and  
( ),p rσ  is the radiation efficiency from a plate to an acoustic volume. The corresponding 

conductivity then follows from Eq. (7). The same formulation is used for the radiation from 
the resonant plate vibration into the cavity, though, the radiated power is distributed to the 
oblique cavity modes and the plane cavity-wall modes according to their modal density, since 
the radiation efficiencies for these different mode groups have not been evaluated. Thus, the 
conductivities are given by 

 
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, ,

, , , ,;

p r p r
o p p

p co p r p cw p r
o p co p ct o p cw p ct

C c n m

C c n n m n C c n n m n

ρ σ

ρ σ ρ σ

=

= =
, (32) 

where ct cw con n n= + . To evaluate the conductivity for the energy flow from the cavity-wall 
modes to a room, the wall’s mean square vibration velocity need be related to the modal 
power and the radiation efficiency for these modes need be evaluated. 
 In the simplified model considered, all strain energy is in the fluid and for sinusoidal 
mode shapes in the x-y plane we have 

 ( )
2

20
22 0

0

ˆ sin sin d
4

d

cw r r r
cw

S p
e z d z z

n c
γ μ γ γ

ρ
= +∫ , (33) 

if the modal density is non-zero and ˆ 0cwe = , otherwise. The ms vibration velocity of wall j 
is similarly from Eqs. (24) and (25) 

 
( )

( )

22
0 22

2

0

sin sin

4
r j r r j

j

j

p z d z
v

d

γ μ γ γ

ω ρ μ

+
=� , (34) 

and is thus linearly related to the modal power (33). 
 In reference [1], Craik improves the model for non-resonant transmission in double 
walls upon assuming that the plane cavity modes are sonic so that the forced wall vibration 
will radiate as if the considered frequency was the critical frequency. The plane cavity-wall 
modes considered in this work are, as seen in Fig x, super sonic. The radiation efficiency is 
therefore [27, p 503] 

 ( ), 2 2cw r
r a a r a rk k kσ κ γ= − = . (35) 

though, it should not exceed the maximum value for sonic modes in a finite plate [27, p533]: 
( ),
max 0.45cw r U f cσ = , where U  is the plate perimeter. Additionally, around the coincidence 

frequency and above this frequency, the cavity pressure does not excite mass impeded wall 
motion but resonant modes only. A dodge to account for this effect is to multiply the radiation 
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efficiency with the factor ( )( ),1 p rσ−  or zero, whichever is larger. Thus the radiation 

efficiency for the wall motion of the cavity-wall modes is here given by 

 ( ) ( )( ) ( )( ), , ,
maxmin , * max 1 ,0cw r cw r p r

r a rkσ γ σ σ= − . (36) 

 Upon this basis, the conductivity for the coupling of cavity-wall modes and a room, and 
similarly for the oblique cavity waves and the room, is given by 

 ( ) ( ) ( ) ( ), , 0, ,
0 0 0 0;cw r cw r c r cw r

r rC c S q C c S qρ σ ρ σ= =  (37) 

where 2 ˆr j cwq v e= �  is given by Eqs (33) and (34).  

3.3 Comparison with measurements 

The new double wall formulation is illustrated in Fig 11. It is simular to Craik and Smith's 
model [6] except for that the cavity element is subdivided into two elements and these 
describe not only the fluid motion but also the mass impeded motion of the walls. The first 
element models the almost plane motion of the cavity-wall and the second element describe 
the oblique cavity modes. Their modal densities are given by Eq. (29) and (30). The 
conductivities, for the coupling to the resonant vibrations of the walls and to the rooms, are 
described by the conductivities in Eqs (32) and (37). The other parts of the new model is 
described similarly to reference [6], as far as it has been possible.  
 A particularly difficult problem in both dynamic and energy based modelling of vibro-
acoustic response of real life structures is the estimation of damping. Here, the frequency 
independent loss factors reported in [6] for the plates and frames of 0.01η =  and 

0.015η =  are adopted. The equivalent absorption areas of the rooms are chosen so large that 
their precise values do not influence the calculated SRI. The reverberation time for the 100 
mm cavity, with no extra damping, is reported in Fig 7 of reference [6]. The cavity damping 
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loss factors are derived, equally for the plane cavity-wall modes and the oblique cavity 
modes, from these reverberation times. The damping loss factors for the 50 mm and the 150 
mm cavities are assumed to be given by the one for the 100 mm cavity in inverse proportion 
to the cavity depth, since, it is believed, most of the damping arises, because of viscosity and 
heat conduction, at the walls and frames and, because of air pumping, at the interface of these 
structural components.  
 The radiation efficiency, ( ),p rσ , for the radiation of a thin-walled, simply supported and 
baffled, plate to a semi infinite acoustic volume is calculated using the equations given by 
Leppington, Broadbent and Heron [28]. The multipliers suggested in Fig. 5 of reference [6] 
are applied, with the point coupling condition assumed.  
 The calculated SRIs for the three cavity depths are shown in Figs 6 and 12 together with 
the calculated and measured values of Craik and Smith. The new model underestimates the 
SRI at the coincidence frequency, in the 3.15 kHz band, by some 4-8 dB, which is 
unexplained, as the new and old models should be similar at such high frequencies. The 
agreement in the low frequency region, below, around and an octave above the double wall 
resonance, is good but somewhat erratic, probably so as the mode count is rather low for most 
of the elements. Additionally there is a consistent overestimation in the 160 Hz band. Other 
than this, the agreement between calculations and measurements is excellent for the 50 mm 
and the 100 mm cavities and good for the 150 mm cavity. Given the expected uncertainty of 
an SEA model in general, and the damping estimates in particular, the results are rather too 
good. 

6. CONCLUSIONS 

The title of this note promised two observations on SEA. These observations are not 
originally presented here but are substantiated. They are: 1) The use of travelling wave 
estimates for evaluating the coupling parameters is consistent with the Coupling Power 
Proportionality hypothesis, if the postulates in Section 2 are valid. 2) The elements of an SEA 
are not substructures but elements of vibroacoustic response. 
 The demonstration in Section 2 shows that SEA can be applied successfully whenever a 

Figure 12. Sound Reduction Index. Left, 50 mm cavity; Right 150 mm cavity. Solid blue line, 
measured [6]; Dotted black line, old model [6]; Dashed red line, new model.
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Figure 12. Sound Reduction Index. Left, 50 mm cavity; Right 150 mm cavity. Solid blue line, 
measured [6]; Dotted black line, old model [6]; Dashed red line, new model.
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one-way calculation of energy transport is considered useful. Examples of such one-way 
calculations uses, e.g., radiation efficiency, reduction index or insertion loss to quantify the 
energy transport from one structure to another. The SEA formulation has the advantage that it 
is symmetric so that one model can be built and then used for predictions of response at 
different locations from different excitations. Additionally, the analysis in Section 2 indicates 
that the SEA provides better results, than the one-way approaches, whenever receiving 
elements are not fully absorbent so that some re-radiation occurs. 
 The current author has found the demonstration in Section 2 useful for teaching SEA to 
students that have some knowledge of Engineering Noise Control and the use of one-way 
energy methods. The students understand that SEA is, at least, as good as the methods they 
already know and has, at least, the same range of validity. When they also learn that SEA 
software include many of formulas and procedures, which they have painstakingly learnt and 
quickly forgot they become interested. Moreover, the axiomatic demonstration illustrates the 
postulates or assumptions that ‘standard’ SEA is built upon and this motivates further studies 
of ‘reverberant motion’, ‘weak coupling’ and ‘random structures’. 
 Most good theories are axiomatic, e.g., Newton’s first law, the Euler-Bernoulli beam 
theory and the continuum hypothesis. The beam theory is an example of a theory for which 
the correct set of assumptions was for a long time elusive. (Stephen Timoshenko enjoyably 
describes the evolution of beam theories in “History of strength of materials” [29].) SEA 
cannot be but an approximate method and we are still seeking for an effective set of 
assumptions upon which to build the method. Section 2 tentatively presents a list of such 
assumptions. It is believed, better sets of postulates are found upon a better understanding of: 
the proper identification of the elements of response, the weak coupling concept and the 
response of random structures. To that end recent works by Langley, Brown, Cotoni and 
Shorter, e.g. [30-32], Guayder and Totaro [33], Le Bot [34] and Finnveden [11] are 
interesting. 
 The second observation is illustrated for a double-wall structure. An analysis of the 
wave motion shows that there are no modes in the cavity at frequencies below the double-wall 
resonance. At lower frequencies there are, however, near fields that decay away from one wall 
towards the other. These near fields couple the walls’ motion and an improved low frequency 
model, of particular interest for shallow cavities, would describe this coupling but this was not 
attempted here. 
 The plane acoustic waves that cut-on at the double-wall resonance involve quite large, 
mass impeded, motion of the walls. The modes that correspond to these waves define one 
SEA element for the cavity; the other element is defined by the oblique cavity waves that cut-
on when the cavity depth approximately equals half an acoustic wave length. This element 
formulation obsoletes the non-resonant transmission paths used in earlier double-wall 
formulations [1, 5-6]. Instead there is a direct coupling between the acoustic volumes and the 
resonant cavity-wall modes. As already noted by Craik [1] the plane cavity-wall waves are 
super sonic and have radiation efficiency greater than unity, which was the value used in 
earlier works for the non-resonant transmission [5-6]. The radiation efficiency, however, is 
close to unity at the double-wall resonance and then increases towards the value assumed by 
Craik which applies for sonic motion. The new element attributes the frequency dependent 
radiation efficiency and also the varying modal density and the frequency dependent relation 
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between modal power and wall motion. This new formulation explains why the reduction 
index does not have a distinct minimum at the double-wall resonance but instead have a rather 
constant value in a frequency region, which extends roughly an octave above this resonance. 
 The new double-wall formulation provides results that agree with Craik and Smith’s 
measurements [6]. In fact, the agreement is for the 50 mm and 100 mm double-walls much 
better than warranted by the uncertainty in the damping loss estimates; instead the results for 
the 150 mm wall seems more representative for the precision that one could expect. The new 
formulation has, compared to earlier formulations, the additional advantage that it applies 
through the double-wall resonance so there is no need to shift between a ‘low frequency’ and 
a ‘high frequency’ model. 
 Finally the double-wall example emphasises that the SEA elements are elements of 
response that need not be localised to substructures of the whole structure. The successful 
application of SEA to a new kind of structure, therefore, requires diagnostic measurements 
and diagnostic calculations so that the proper elements can be identified. The same 
observation is probably valid for the newly developed hybrid method that models some 
substructures with the FEM and others by SEA [35]. 
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