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Abstract 
 
This paper describes a new algorithm for producing a complex critical band filter bank and its 
application in computing time-varying loudness, fluctuation strength and roughness. A digital 
Butterworth filter bank is used to define the frequency characteristics of the critical band filter 
bank and then transform it into a complex critical band filter bank by use of the Hilbert 
transform. An FFT transform is used to transform the noise signal into the frequency domain, 
and then the noise signal is separated into critical bands by multiplying it by each critical band 
filter. Finally multi-IFFT transforms are employed to transform each filtered signal into the 
time domain in two orthogonal parts or into a complex signal form. Thus the envelope curve 
can be obtained for each bark band from the amplitude of the complex signal. The 
instantaneous energy of the envelope curve for each critical band is the instantaneous loudness 
in that critical band and the depth of the envelope curve of each critical band is proportional to 
the fluctuation strength and roughness in that critical band. 

1. INTRODUCTION 

The Zwicker method has come to be seen as the most useful and the most commonly used 
approach to calculate the loudness needed in sound quality software. In the Zwicker method, 
one-third octave sound pressure levels are used as input data and are transformed into the 
loudness of critical bands by a psychoacoustic model; then the loudness of critical bands are 
summed to obtain the total loudness. In most cases, the Fast Fourier transform (FFT) is 
employed to calculate the power spectrum and the one-third octave bands of the signal, then to 
calculate the loudness. For the stationary loudness analysis, there is no problem. For the time 
varying loudness analysis, a problem arises. The FFT has a fixed spectral resolution, which 
depends on the length of the signal time window. With the signal time window of 100 
milliseconds, the spectral resolution is 10 Hz. A signal with a time window of 10 milliseconds 
has a spectral resolution of 100 Hz. When the spectral resolution of the signal is low, the 
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one-third octave resolution of the signal is low also. The loudness calculated is incorrect as 
well.  
In the definitions of roughness and fluctuation strength, the time varying loudness is the basic 
parameter used to obtain these two psychoacoustic quantities. For the calculation of the 
roughness from the time varying loudness, a 3 milliseconds time resolution is a minimum 
requirement. This means that a 333 Hz spectral resolution is used in calculating the loudness by 
the FFT. In this paper, a new FFT-based filter bank algorithm is presented to calculate the time 
varying critical band spectrum, which is the key to obtain the time varying loudness. In addition 
some new ideas are outlined for the use of the time varying loudness to determine the 
fluctuation strength and roughness. 

2. ESTIMATIONS OF THE TIME VARYING LOUDNESS 

2.1 Critical bands 

In the Zwicker method, the audible frequency range is divided into 24 critical bands. Table 1 
shows parts of the arrangement [1]. The bands are similar to the frequency bandwidths of the 
one-third octave bands. The one-third octave bands are replaced by critical band spectra in the 
calculation of the loudness in the Zwicker method. 
 

Table 1. Critical Bands 

Critical Band z 1 2 3 4 5 6 7 8 …
Low Frequency (Hz) 50 150 250 350 450 570 700 840 …
High Frequency (Hz) 150 250 350 450 570 700 840 1000 …

Central Frequency (Hz) 100 200 300 400 510 630 770 920 …
 

2.2 Critical Band Filter Bank 

The critical band filter bank is a group of filters. Each filter corresponds to a critical band. At 
any frequency, the sum of the squares of each filter’s amplitude response is equal to one. This 
means that no energy losses occur in the filtered signals. 
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where | Hb (ω) | is  the amplitude response of the filter in the critical band b. 
To design filters that satisfy these requirements, a band-pass Butterworth filter is constructed to 
define the critical band filter. 
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where p is the order of Butterworth filter,  ωb1 is the lower cut-off frequency, and ωb2 is the 
upper cut-off frequency of the critical band filter in the band b. In order to obtain an acceptable 
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digital filter, the magnitude response of the analog filter in Eq. (2) is limited to the Nyquist 
range  {-π< ω < π } in the bilinear transform. 
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When a sampling frequency Hs is fixed, the normalized cut-off frequency of the critical band 
filter can be obtained from the data in Table 1. 
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where fb1 is the lower cut-off frequency, and  fb2 is the upper cut-off frequency of the critical 
band filter in the critical band b. Fig. 1 shows the magnitude responses of a Butterworth filter of 
different order p. 
 

  
Figure.1 Magnitude responses of a Butterworth filter in different order p  

 
By obtaining the cut-off frequency for each critical band filter from Eq. (4) and substituting it 
into Eq. (3), critical band filters can be built and a critical band filter bank can be created. 
 

2.3 Orthogonal Complex Filter and Envelope Filter 

To determine the time varying loudness, it is much more important to obtain the instantaneous 
intensity of the signal in each critical band, than the signal filtered in each band. To obtain the 
instantaneous energy of the signal, an orthogonal complex filter can be used to filter the signal 
and to obtain the envelope of the signal, which is proportional to the energy of the signal.  
An orthogonal complex filter is composed of a real filter and an imaginary filter. Both filters 
have the same magnitude response but have a 900 phase difference between them. 
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A simple method is to define Hbr(ω) as a symmetrical filter and to define Hbi(ω) as an 
anti-symmetrical filter. 
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This leads to 
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This takes the form of the Hilbert transform. When the signal is filtered with an orthogonal 
complex filter, the real part and imaginary parts of the filtered signals have a 900 phase 
difference and the magnitude of the filtered signal is equal to the envelope of the filtered signal.  
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where hb(t) is the impulse response of the complex filter Hb(ω),and yb(t) is the complex filtered 
signal of the original signal x(t). The envelope of the filtered signal is 
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Fig. 2 shows the envelope of a “beat” wave. Compared with the original signal, its envelope is 
usually a low frequency signal. This means that less sampled data are needed, and the 
processing is easier when the original audio signal is separated into twenty-four filtered signals 
by the critical band filter bank. 
 

 
Figure.2 (a) The “beat” wave and (b) its envelope 

 

2.4 FFT Based Envelope Filter 

The signal filtering process can be viewed as the inner product of the signal and the filter in the 
time domain, and the process can also be carried out by calculating the product of the signal and 
the filter in the frequency domain. 
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where X(ω) is the Fourier transform of the signal x(t), and Hb(ω) is the critical band filter 
defined in Eq. (7). Fig. 3 shows the envelope filter algorithm obtained using the FFT.  
 
 

 

 

 

 

 

 
 

Figure. 3 Envelope filter algorithm using FFT 
 

2.5 Short time energy of critical bands 

The short time energy of each critical band is defined as 
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where T is the length of time window. From Eq. (9), the short time energy of the envelope of the 
signal is twice as large as the short time energy of the signal, so a factor of 0.5 is introduced into 
the formula. 
Four time windows are used for different purposes.  A 2.5 milliseconds time window is used for 
the instantaneous loudness. A 20 milliseconds time window is used for loudness when it is 
varying very quickly. A 125 milliseconds time window is used for loudness varying quickly. A 
1000 milliseconds time window is used for loudness varying slowly. Fig. 4 shows a white noise 
signal and its short time energy in critical bands. The length of the time window is 125 
milliseconds. 
 

 
Figure. 4 (a) White noise signal and (b) its critical band short time energy 

 

2.6 Time-varying Loudness 

Two methods are used to obtain the time-varying loudness. The first method uses the critical 
band short time energy to replace the one-third octave band in the Zwicker method. It is much 
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the same as the normal Zwicker method. Fig. 5 shows the critical band short time energy and 
the Zwicker critical band response. 
 

 
Figure. 5 (a) Critical band short time energy and (b) Zwicker critical band response 

 
The second method uses the equal sound pressure level contour that is obtained from the equal 
loudness level contour to transform the critical band short time energy into the critical band 
loudness [3], [4]. The equal loudness level and equal sound pressure level contours are shown 
in Fig. 6. 

   

 
Figure. 6 (a) Equal loudness level contour and (b) equal sound pressure level contour 

 
The time varying total loudness can be calculated from the time varying critical band loudness 
using the  ISO R 532 A (Steven's method) [2]. 
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where NTotal  is the time varying total loudness, and Nb is the time varying critical band loudness 
in the critical band b. 
Fig. 7 shows a time varying loudness analysis result of a Ford Mustang sports car. Fig. 8 shows 
a time varying loudness analysis result of a Jaguar S-type luxury saloon car. One can see that 
the road noise of the sports car fluctuates considerably in time, while the road noise of the 
Jaguar car is much steadier. The results are the similar to the subjective assessment of the noise 
made by the human subjects. 
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Figure. 7 (a) Time varying loudness and (b) time varying critical band loudness 

 of the Mustang sports car 
 

 
Figure. 8 (a) Time varying loudness and (b) time varying critical band loudness 

of the Jaguar saloon car  

2.7 Fluctuation Strength and Roughness 

The time varying total loudness shows the variation in loudness. It can be used to estimate the 
fluctuation strength and the roughness. Figure 9 shows a white noise signal that is modulated by 
a 4 Hz signal at a depth of 80%. Fig. 10 shows a white noise signal that is modulated by a 20 Hz 
signal at a depth of 80%. 
 

           
Figure. 9 (a) Time varying loudness and (b) time varying critical band loudness 

of a 4 Hz modulated white noise signal 
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Figure. 10 (a) Time varying loudness and (b) time varying critical band loudness 

of a 20 Hz modulated white noise signal 
 

The time varying total loudness curves in Figs. 9 and 10 reflect the modulated process of the 
loudness very clearly. It is a good way to use them to estimate the fluctuation strength and 
roughness. 

3. CONCLUSION 

A novel time varying loudness algorithm is proposed. The algorithm uses the FFT based 
complex critical band filter bank to separate the signal into 24 bark bands and to calculate the 
short time energy from the envelope output of the filter bank. By use of an equal sound pressure 
level contour that is obtained from the equal loudness level curves, the short time energy is 
transformed into the time-varying loudness. This result produces the variation of the loudness 
with time, and can be used to estimate fluctuation strength and roughness. Some examples 
presented show the advantages of the new algorithm. 
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