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ABSTRACT
Different kinds of mechanical variators are used as a part of complex machine system.
Variators, as transmission system , with a changeable transmission ration, are involved in a
lot of complex machines. They are used  for changing  speed in agricultural machines,
industries of cable, carpet and paper industries, mining machines, account machines, etc.
Seeing this large  use of mechanical variators in industry, the aim of this paper is to describe
a dynamical behavior of the general example of the variators of speed as non-holonomic
system. In this paper a frontal variator of speed  with two discs, half ball and regulator will
be analyzed. The non-holonomic connection is in points of physical contact between the discs
and half ball. To this system  is added  mechanical regulator for regulation of variable
transmission relation between input and output elements. A damper is added for stabilizing
movement. Differential equations of moving will be solved by using Appell’s equations and by
resolving the numerical method. In this way, we are getting an answer  to a dynamical and
kinematical behavior of mechanical systems under the give us  the answer  to a working
stability a system being observed.
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1. INTRODUCTION

Different kinds of mechanical speed variators are as part of complex machine systems. They
are used for changing speed in agricultural machines, cutting machines the cable, carpet and
paper industries, mining machines, account machines, etc.
Seeing this large use of mechanical variations in industry, the aim of this paper is to give the
dynamic analysis of a general example of this class of machine element. These mechanical
systems are non-holominc, because the connections is differential. Holonomic systems have
connections which are functions of speed and acceleration. In variators the constraints are



described by differential equations with which it is not possible by integration to deduce
geometric characteristics. This is the basis of non-holonomic mechanics and gives the
difference from holonomic mechanics where are all connections have geometric characteristic
and there are no limits of speed and acceleration for the system. The practical use of
mechanical non-holonomic systems is only beginning but the theory is very developed.
In this paper a frontal frictional variator of speed with two discs, half ball and Watt`s regulator
will be analyzed. The non-holonomic connection is in points of physical contact between the
discs and half ball. To this system is added Watt`s regulator for regulation of the variable
transmission relation between input and output elements. A damper is added for stabilizing
movement. During dynamically analysis Appell`s equations are used. As a result differential
equations of movement are obtained which describe the mechanical non-holonomic system. In
many cases it is not possible to solve these differential equations and they must be solved on
digital computers using numerical methods.

2.  METHOD FOR DYNAMIC ANALYSIS OF NON-HOLONOMIC SYSTEMS

Appell`s equations, which are very suitable for dynamic analysis are given in the well known
form:
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were:
S* - energy of acceleration (a function of &&q  only)
&&q - generalized acceleration

Q ν
* -  generalized force

The energy of acceleration is given by the relations:

S
m a

m r
j j

j

N

j
j

N

j= =
= =

∑ ∑
r

r
2

1 1

2

2

1

2
(&&) (2)

where:
r&&rj - acceleration of material points j with mass mj
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where:
r
Fj  - external force in material point j
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r
A jν - Appell`s vector

The relationship between functional and nonfunctional generalized accelerations and
velocities is given as:
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where:

& ,&&q qh h  - functional generalized velocity and acceleration 

Eh - all terms without second derivative of generalized coordinates qi

Then for all h and v:
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where vector E* is without differential of generalized coordinates (&& ).qν
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where A�i and A� are coefficients in function of qi and t.
In practice it is necessary to write the energy of accelerations S* as a function of the

nonfunctional generalized accelerations  q&&ν and then to find Qν
* and put it in eq. (1).

3.  MECHANICAL VARIATOR WITH HALF BALL AS NON-HOLONOMIC
SYSTEM

The frictional variator with half ball is shown in fig. 1. Variation of angular speed by this
variator is due to a change of position of contact point A or B caused by rotation of the half
ball trough on angle in one or other direction. In this way the distance between the contact
point and rotating axis is changed and gives the variable transmission relation between
elements 1 and 2. The closed automatic regulation is made such that the slider is connected at
point D. The torsion elastic element c1 is located at point O3 where the half ball rotates. The
work of elastic element c1 is proportional to that of elastic element c2. This type of variator is
good for large ranges of regulation.

Symbols in fig. 1 are:

r1 and r2 - radiuses of leading and leaded disc r1-r2

r - radius of half ball 3
r3 - radius of gear z3
x and xo - position and start position of slider D of regulator
� and �o - angle and start angle of half ball 3 around the axle O3

� - angular position of contact points A and B to vertical axle
� - angle of position for regulators bar



�l           - start load of elastic element
c - elasticity of elastic element
z1,z2,z3,z4 and zL - number of teeth of gears and lath
ir - transmission relation of reductor
& ,& ,& , &φ φ φ α1 2 3 - angular speeds of leading, leaded discs, balls, and rotating around axle O3

mD - mass of slider in point D
mN - mass of ball of regulator
J1, J2 - inertial moments of leading and leaded discs
J3 - inertial moment of half ball
Jo3 - inertial moment for axle O3 normal to the plane of drawing
Jr - reduced inertial moment of all rotating masses of working elements on the

   axle O2 of  element 2
M1 and M2  - moments on leading and leaded elements M1 = Me      M2 = Mk  io
io - transmission relation to shaft O2 and working element io = i12   ir
i12 and ir - transmission relation between gears z1 and z2 and reductor
&x - speed of regulation, change of position for slider D

Fig. 1. Close mechanical regulating system with variator with half ball
1. leading disc; 2. leaded disc; 3. half ball; 4. regulator;
5. reductor with working element; 6. damper



Dynamically analysis will be done by Appell’s equations for non-holonomic systems. This
system has three generalized coordinates �1, �2 and x. The general form of Appell’s equations
is:
∂
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where:
S  - energy of acceleration in function of non-functional generalized accelerations
&& &&φ2 and x  - non-functional generalized accelerations

Qφ2
and Qx  - generalized forces in function of non-functional generalized coordinates and

   speeds.
Non-holonomic connection is:
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The energy of acceleration is:
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where:
&&,&& ,&&,&&φ φ φ α1 2 3    - angular acceleration for axles (fig. 1)
&&x  - acceleration of point D
Sk  - energy of acceleration of ball
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where:
r r
apN and a  pT - normal and tangential transmission acceleration of point N
r r
arN rT and a - relative normal and tangential acceleration of point N
r
ak                    - Coriolis`s acceleration

apN  =     sin 2l &φ δ2          arN  =   2l &δ            ak  =  2     cos 2⋅ & &φ δ δl

apT =     sin l &&φ δ2           arT  =   l &&δ      (14)

Square or acceleration for point N is:
a a a a aN rT pN pT K

2 2 2 2 =  (a  sin + apN rNδ δ) ( cos ) ( )+ − + + (15)

Geometrical connections are:

x - xo = (�-�o) r3    ;    cos� = 
x

2l
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Differenting eq. (16) is:
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Now it can be written:
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where:
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If eq. (18) is put in the first eq. (13) then SK is defined. Connection between &&φ1and &&φ2 is got
by differenting of non-holonomic connection (10).
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From the first eq. (17) is
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Generalized forces are defined from virtual work and potential energy.
δ δφ δφ δ φ δφ δA M b Q xx =  M  x x = Q1 2⋅ − ⋅ − ⋅ ⋅ + ⋅1 2 2 2& ,

and
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M1 = A - B&φ1;      M2 = io (D - Ct)
If the change of positions for elastic element is:
∆ l +  (x - xo ) (24)

Using the eq. (24) and start load of elastic elements �l we can write potential energy in form:
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Generalized force with force for damping (- b &x ) is:
Q c cx  =  - (x - x   l  -  b xo ) &− ∆ (26)
Differential equations of movement are:
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Putting &x = V and &φ2  = �2 and solving the system of non-linear differential equations (27) on
electrical computer using numerical method of integration it is possible to denote the
parameters x, V and �2 in function of time t.

4. EXAMPLE

For example depicted on Fig. 1 values of parameters are:
J1 = 0.08; J2 = 0.08; J3 = 0.10; Jr = 0,42; J03 = 0.15 (kg m2); mN = 0.3; mD = 0.8 (kg); c = 10
(N/m); b = 5000 (Ns/m); �l = 7 (mm);  l = 200; r = 80; r1=r2 = 30; r3 = 20 (mm); � = 450;
z1=20;  z2=50;z3=z4=30; ir = 3; M1 = A-B&φ1; M2 = Mk�io = io (D-C�t); A = 557,9 (Nm); B =

5.33 (Nms); D = 10 (Nm); C = 0.524 (Nm/s); to = O(s); �o = 35o; �20 = 10 (s-1);
xo = 0.28(m); io = i12�ir = 7.5.

Figure 2. Time histories & , &φ2  x=V, x



5. CONCLUSION

Using the dynamically analyze of frontal frictional variator with two discs and half ball with
contact in point it is got answer about the manner of this mechanical non-holonomic system.
In dynamical analyze are used Appell`s equations.
Solving the system of differential equations it is possible to determine the parameters x, V, �2

as �1 too, in function of time t. Then it is possible very simple to denote the stability of this
system.
The motion becomes stable often 0.7 second (See Fig. 2). This example is very good for
presentation of dynamically behavior of non-holonomic mechanical transmission as regulation
system.
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