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One of the most important question arises when studying the vibro-acoustic
phenomenon in the presence of non uniform mean flow is the justification of the boundary
conditions at the structumfluid interface.

Primarily, we are presenting the linear acoustic equations in a mixed representation for a
heterogeneous moving medium and associated boundary conditions. In the mixed
representation, the equations verified by Lagrangian perturbations are written in Eulerian
variables in association with mean flow of the medium concerned. The choice of this
approach allows us to represent - in the sense of distribution theory - the acoustic field
equations provided that one uses normal acoustic displacement continuity, and to deduce
boundary conditions at the interface between two moving media.

Secondly, we are proposing a new formulation for the elasto-acoustic coupling problem
using the previous results. In this approach the acoustic domain is divided in two sub-
domains : The first one, coupling the structure, whe~ the flow of fluid is non uniform, is
discmtised by finite elements. The second one, bounding the previous one, where the flow
is supposed to be zero, is discretised by boundary elements. The association of functiorud
structure, discretised by finite element, gives us the final vibro-acoustic system to solve.

1. VIBRO-ACOUSI’IC EQUATIONS

The acoustic equations are obtained using perturbation of the mechanics equations of
continuous media. When the considered medium is initially at rest, the linear acoustical
equations can be established in Eulexian as well as Lagrangian representation. However, in
our elasto-acoustic problem, characteristics of the medium in its initial state are not
constant throughout the space : flow is non uniform. The choice of the representation and
that of the boundaxy conditions is therefore more complex and we have to clearly
distinguish the different descriptions.

It is in the mixed representation with the work of H.GALBRUN and B.POIREE that we
have found the most suitable response to our problem. In 1931, H.GALBRUN has shown
that aIl acoustic variables can be deduced from the Lagrangian acoustic displacement
which verifies the partial differential equation called “Galbrun’s equation”. The work of
B.POIREE is based on the same principle. In the mixed representation, equations verified
by Lagrangian perturbations are written in Eulerian variables in association with the mean



flow. B.POIREE has shown the interest of such a representation for a complex problem
like a heterogeneous fluid flow : it allows to represent -in the sense of distributions theory-
the acoustic field equation provided one uses the continuity of the normal Lagrangian
acoustic displacement. Then he determines the jump conditions for Lagrangian
perturbations across a flow discontinuity in the particularly case of a plan acoustic dioptre.

We summarise linear acoustic equations, for the general case, in the mixed
representation for a heterogeneous moving medium and associated boundary conditions
across a surface discontinuity for a given geometry. Then we study the particular case of
the vibr~acoustic coupling with non uniform mean flow. The appropriate use of the
boundary conditions allows us to establish the complete system of equations for our
problem;

1.1. SOME DEFINITIONS AND NOTATIONS

13gure1- Perturbed and non perturbed working conilguration.

All function W can be written as WL -EW(a,t) in Lagmngian variables (a,t). (X.,t’)are
Eulerian variables linked to the working movement (n& &xlurbed and suppos~ to be
known) of particles and (X ,t”) are Eulerian variables linked to the particle in its perturbed

state. The perturbation of W at the first order is made %y ~~p , where

V, is the non perturbed part of W and is known. The linearisation of equations of

conservation implies the definition of a Lagmngian displacement as Xi = Xel + e~~l (1)

1.2. EQUATIONS OF PERTURBATIONS IN THE MIXED REPRESENTATION
THE GOVERNING EQUATIONS OF THE STRUCTURE AND THE FLUID

The equation of perturbation of the @Biquantity can be generally written in the mixed
representation as:

(2)

where gi is the specific density, Bi the rate of specific density which represents SOurceSof

the considered variable and b ji the flux density tensor of the considered variable.
The euuation of the structure is deduced from this last equation. The structure is

supposed to be elastic, without any working movement and volurnic forces. Assuming the



initial state stationary and a harmonic time dependence (exp(-iwt)), we determine:

(3)

In the same way but after few transformations, we deduce the euuation of mopwation
verified by the Lagrangian acoustical displacement. The fluid is supposed to be perfect,
compressible, isentropic, in the presence of non uniform mean flow and not subjected to
any conservative forces. The initial state of the fluid is considered stationary. We assume a
low Mach number so the speed of sound can be considered constant and a harmonic time
dependence (exp(-i@)) ::
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We recognise the ‘Galbrun’sequation”.

1.3. ASSOCIATED BOUNDARY CONDITIONS

/

MEDIUM (1)
lze

MEDIUM (2) ~~e =3
Fluid Structure~

(lPe, lPe, 11;) ( 2P., 2~e ,2C;)

F&WC2- Fluid-structure coupling

We assume that every variables attached to the considered medium are discontinuous

across a surface X The writing of the equation of perturbation (2) - in the sense of the
distributions theory - requires the supplementary assumption of normal Lagrangian
acoustical displacement continuity:

[C~inei~e= O, where [ he represents the jump across I&. (5)

With this condition, one achieves the boundary condition across 2& whose equation is
se (Xe,t’)== :

(6)

This last result is essential ‘&cause it is a generalisation of the particularly case treated
by B.FOIREE: this one deals with every continuous heterogeneous medium. In our @MR
acoustic case and with alight fluid, (6) gives:

with: - the acoustical pressure 1P; ‘7 Pec$dv( 1$) (8)



(9)

2. THE VARIATIONAL FORMULATION

In the approach that we have adopted, the acoustic domain is divided into two sub-
domains: Q1 called the “internal” domain and Qz called the “external” domain.

medium (3)

+
n

Egms -Description of the problem

where - Q1 is the acoustic domain where the flow is non uniform,
- QZ is the domain representing the structure,
-2 is the elastic surface,
- S23 is the infinite acoustic domain where the flow is supposed to be zero,

- r is the interface between $21 and Q3,

In !21, we use a discretisation by finite elements of the acoustical displacement. In S23 ,
which is infinite and without flow, we keep the simplified integral formulation written in
terms of the acoustic pressure and acoustic pressure gmdient. The coupling of the two
media f21 and S23 is obtained not only by applying the pressure and the pressure gradient
continuity, but also by associating the two integral formulations (if we keep in mind that
the pressure can be written in terms of acoustic displacement).

The association of functional structure, discretised by finite elements, is made by using
appropriate boundary Wnditions, presented in the first part of this work, and gives us the
final vibro-acoustic system to solve.

We summarise now the integml formulation associated to the ‘internal” problem and the
one comesponding to the “external” problem. Then we write the coupling between the two
acoustic formulations. At the end, we present the integml form associated to the structure
and the global coupiing of the vibro-acoustic problem.

2.1. THE INTEGRAL FORMULATION ASSOCIATED TO THE INTERNAL
DOMAIN $21

The weak integral formulation is obtained by weighting the equation of propagation (4)

by a test function ~W*, integration over the domain S21and integration by parts. Since the
working velocity is zero in the domain !22 attached to the structure and Q3 the one
corresponding to the “external” fluid, we will obtain:



(lo)

202. THE INTEGRAL FORMULATION ASSOCIATED TO THE “EXTERNAL “
DOMAIN SZ~

In Qq, the equation of propagation, written in terms of pressure and for a harmonic

time dependence (exp(-iwt)), is given by the Helmholtz’s equation (which is a particular
case of (4) ) and by the mditions of pressure continuity and/or gmdient pressure
continuity (since it is the same fluid in Q1 and G?~):

(11){ a ~t+i

13Pp”lPp = ~ = Pr on l_’-p=<
I

[
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+ Sommerfeld’s radiation condition

Introducing G(Xe,Ye ) the elementary solution of the Helmholtz equation which
verifies the Sommerfeld radiation condition, we obtain the integral representation of the

a3 Pp
acoustic pressure Spp and of the gradient pressure — on I’. The first one is used in the

dn
boundary integral of equation (10). The pondemtion of the second one by a test function

p; and the integration over the contour I’ give:

i)2G(&~ye)dr(ye) d17(&)‘3pP(xe) &(xe) + J W:(x.) 3pP(ye) an(Xe)~(ye)
~J~:(xe) h(x.)

rm
a3p (ye) @x.~ye) d~ye) dI’(Xc) =-O

v p;- j ~(xe) ih~Ye) an(x.)
rxr

(12)

23. COUPLING OF THE FLUID INTEGRAL FORMULATIONS

In otier to couple the two fluid integral formulations, we apply the continuity of

pressure (11) on the boundary I’ between the “internal” domain Ql, discretised by finite
elements, and the external domain K13,dism%ised by boundary finite elements.



2.4. INTEGRAL FORMULATION OF THE STRUCTURE

By ponderating equation (3) by a arbitrary weight 2W*, integrating over Q2, and using
the first Green’s formulation, we obtain:

v 2W* (13)

205.ELASTO-ACOUSTIC JUMP CONDITION

In the functional of the structure (13) as in the one of the fluid flow (10), we use the
.

(14)

J s2 ‘l%k ~w~ni ~ .-

lpe Ce dx~k
p~ Jvfi dx (15)

2 z
We have to use now the condition of continuity of the normal displacement (5). We

write :

(16)

3. CONCLUSION

We have established, in terms of Lagrangian acoustic displacement, the complete
equations of a vibro-acoustic problem in the presence of non uniform mean flow. This
equations are written in the mixed representation where I.agrangian perturbations are
written in Eulerian variables linked to the working flow. The choice of this representation
has been justified because it allows us the suitable writing of the jump conditions at the
interface between the structure and the fluid flow provided we use the continuity of the
normal Lagrangian acoustic displacement.

Those equations have been used in the writing of global numeric formulation in order to
solve our vibro-acoustic problem : The variational formulation associated to the global
coupled system (figure 4) is obtained by assembling the three formulations (10) (13),
discretised by finite elements, and (12), discretised by boundary finite elements. The
unknowns of the system are the acoustical Lagrangian displacement, for the structure and
the fluid flow, and the acoustical pressure for the “external fluid without flow.

Our formulation is now associated to a software of acoustic modelisation but
computational mmlts are not the purpose of this paper.
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lgure 4- Marl’ixRpreSalting the coupled global system
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