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One of the most important question arises when studying the vibro-acoustic
phenomenon in the presence of non uniform mean flow is the justification of the boundary
conditions at the structure-fluid interface.

Primarily, we are presenting the linear acoustic equations in a mixed representation for a
heterogeneous moving medium and associated boundary conditions. In the mixed
representation, the equations verified by Lagrangian perturbations are written in Eulerian
variables in association with mean flow of the medium concerned. The choice of this
approach allows us to represent - in the sense of distribution theory - the acoustic field
equations provided that one uses normal acoustic displacement continuity, and to deduce
boundary conditions at the interface between two moving media.

Secondly, we are proposing a new formulation for the elasto-acoustic coupling problem
using the previous results. In this approach the acoustic domain is divided in two sub-
domains : The first one, coupling the structure, where the flow of fluid is non uniform, is
discretised by finite elements. The second one, bounding the previous one, where the flow
is supposed to be zero, is discretised by boundary elements. The association of functional
structure, discretised by finite element, gives us the final vibro-acoustic system to solve.

1. VIBRO-ACOUSTIC EQUATIONS

The acoustic equations are obtained using perturbation of the mechanics equations of
continuous media. When the considered medium is initially at rest, the linear acoustical
equations can be established in Eulerian as well as Lagrangian representation. However, in
our elasto-acoustic problem, characteristics of the medium in its initial state are not
constant throughout the space : flow is non uniform. The choice of the representation and
that of the boundary conditions is therefore more complex and we have to clearly
distinguish the different descriptions.

It is in the mixed representation with the work of H.GALBRUN and B.POIREE that we
have found the most suitable response to our problem. In 1931, HHGALBRUN has shown
that all acoustic variables can be deduced from the Lagrangian acoustic displacement
which verifies the partial differential equation called "Galbrun's equation". The work of
B.POIREE is based on the same principle. In the mixed representation, equations verified
by Lagrangian perturbations are written in Eulerian variables in association with the mean



flow. B.POIREE has shown the interest of such a representation for a complex problem
like a heterogeneous fluid flow : it allows to represent -in the sense of distributions theory-
the acoustic field equation provided one uses the continuity of the normal Lagrangian
acoustic displacement. Then he determines the jump conditions for Lagrangian
perturbations across a flow discontinuity in the particularly case of a plan acoustic dioptre.

We summarise linear acoustic equations, for the general case, in the mixed
representation for a heterogeneous moving medium and associated boundary conditions
across a surface discontinuity for a given geometry. Then we study the particular case of
the vibro-acoustic coupling with non uniform mean flow. The appropriate use of the
boundary conditions allows us to establish the complete system of equations for our
problem.

1.1. SOME DEFINITIONS AND NOTATIONS
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Figure 1 - Perturbed and non perturbed working configuration.

All function ¥ can be written as W = ¥(a,t) in Lagrangian variables (a,t). (X,.t') are
Eulenan variables linked to the working movement (non perturbed and supposed to be
known) of particles and (X ,t") are Eulerian variables linked to the particle in its perturbed

state. The perturbation of W at the first order is made Yby YhostB¥'; , where
W, is the non perturbed part of ¥ and is known. The linearisation of equations of

conservation implies the definition of a Lagrangian displacement as X; = Xe; + e?;:;i (1)

1.2. EQUATIONS OF PERTURBATIONS IN THE MIXED REPRESENTATION
THE GOVERNING EQUATIONS OF THE STRUCTURE AND THE FLUID

The equation of perturbation of the pB; quantity can be generally written in the mixed
representation as :
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where Bi is the specific density, B; the rate of spec1ﬁc density which represents sources of
the considered variable and b ; the flux density tensor of the considered variable.

The equation of the structure is deduced from this last equation. The structure is
supposed to be elastic, without any working movement and volumic forces. Assuming the

(2)



initial state stationary and a harmonic time dependence (exp(-iwt)), we determine :

f otk 11
b0t 4 [ot, Cp; |

Pl _] eh l 1~ | | =0
aXeJ 1 [aX 0Xe, il

In the same way but after few transformations, we deduce the equation of propagation
verified by the Lagrangian acoustical displacement. The fluid is supposed to be perfect,
compressible, isentropic, in the presence of non uniform mean flow and not subjected to
any conservative forces. The initial state of the fluid is considered stationary. We assume a
low Mach number so the speed of sound can be considered constant and a harmonic time

dependence (exp(-iwt)) : :
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We recognise the 'Galbrun's equation”.
1.3. ASSOCIATED BOUNDARY CONDITIONS
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Figure 2 - Fluid-structure coupling

We assume that every variables attached to the considered medium are discontinuous

across a surface 2. The writing of the equation of perturbation (2) - in the sense of the
distributions theory - requires the supplementary assumption of normal Lagrangian
acoustical displacement continuity :

[f;:;i ng, ]Ee =0, where|[ ]‘-'e represents the jump across Ze. (5)

With this condition, one achieves the boundary condition across Z,, whose equation is
Se (Xe,t)=0:
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This last result is essentlal because itis a generallsatlon of the particularly case treated

by B.POIREE : this one deals with every continuous heterogeneous medium. In our vibro-
acoustic case and with a light fluid, (6) gives :
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with: - the acoustical pressure lpI,j - pecgdiv( 12;:;) (8)
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- the stress tensor

2. THE VARIATIONAL FORMULATION

In the approach that we have adopted, the acoustic domain is divided into two sub-
domains : Q, called the "internal" domain and Q, called the "external” domain.
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Figure 3 - Description of the problem

where - Q, is the acoustic domain where the flow is non uniform,
- Q, is the domain representing the structure,
- 2 is the elastic surface,
- €5 is the infinite acoustic domain where the flow is supposed to be zero,

- T is the interface between Q; and Q3.

In Q,, we use a discretisation by finite elements of the acoustical displacement. In Q3 ,

which is infinite and without flow, we keep the simplified integral formulation written in
terms of the acoustic pressure and acoustic pressure gradient. The coupling of the two
media 2, and Q5 is obtained not only by applying the pressure and the pressure gradient
continuity, but also by associating the two integral formulations (if we keep in mind that
the pressure can be written in terms of acoustic displacement).

The association of functional structure, discretised by finite elements, is made by using
appropriate boundary conditions, presented in the first part of this work, and gives us the
final vibro-acoustic system to solve.

We summarise now the integral formulation associated to the "internal” problem and the
one corresponding to the "external” problem. Then we write the coupling between the two
acoustic formulations. At the end, we present the integral form associated to the structure
and the global coupling of the vibro-acoustic problem.

2.1. THE INTEGRAL FORMULATION ASSOCIATED TO THE INTERNAL
DOMAIN Q

The weak integral formulation is obtained by weighting the equation of propagation (4)
by a test function W * , integration over the domain ; and integration by parts. Since the

working velocity is zero in the domain 2, attached to the structure and €3 the one
corresponding to the "external” fluid, we will obtain :



J (10)

lt.) * 2 al * *
1P €2 ——2% Win;d= + [ip, cl it Wi nd'=0 A\
6Xek

2 T

2.2. THE INTEGRAL FORMULATION ASSOCIATED TO THE "EXTERNAL"
DOMAIN Q,

In Q,, the equation of propagation, written in terms of pressure and for a harmonic

time dependence (exp(-iwt)), is given by the Helmholtz's equation (which is a particular
case of (4) ) and by the conditions of pressure continuity and/or gradient pressure
continuity (since it is the same fluid in ; and Q5 )
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l + Sommerfeld's radiation condition
Introducing G(X e,Ye) the elementary solution of the Helmholtz equation which
verifies the Sommerfeld radiation condition, we obtain the integral representation of the
)
acoustic pressure 3p, and of the gradient pressure _z_pg on I'. The first one is used in the
n

boundary integral of equation (10). The ponderation of the second one by a test function
u;- and the integration over the contour I give :
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2.3. COUPLING OF THE FLUID INTEGRAL FORMULATIONS

In order to couple the two fluid integral formulations, we apply the continuity of
pressure (11) on the boundary I' between the "internal” domain Q;, discretised by finite
elements, and the external domain Q5 , discretised by boundary finite elements.



2.4. INTEGRAL FORMULATION OF THE STRUCTURE

By ponderating equation (3) by a arbitrary weight ZW*, integrating over 5, and using
the ﬁrst Green's formulation, we obtain :
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2.5. ELASTO-ACOUSTIC JUMP CONDITION

In the functional of the structure (13) as in the one of the fluid flow (10), we use the
boundary condition (7) noting lp:; =g :
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We have to use now the condition of continuity of the normal displacement (5). We
write :
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3. CONCLUSION

We have established, in terms of Lagrangian acoustic displacement, the complete
equations of a vibro-acoustic problem in the presence of non uniform mean flow. This
equations are written in the mixed representation where Lagrangian perturbations are
written in Eulerian variables linked to the working flow. The choice of this representation
has been justified because it allows us the suitable writing of the jump conditions at the
interface between the structure and the fluid flow provided we use the continuity of the
normal Lagrangian acoustic displacement.

Those equations have been used in the writing of global numeric formulation in order to
solve our vibro-acoustic problem : The variational formulation associated to the global
coupled system (figure 4) is obtained by assembling the three formulations (10) (13),
discretised by finite elements, and (12), discretised by boundary finite elements. The
unknowns of the system are the acoustical Lagrangian displacement, for the structure and
the fluid flow, and the acoustical pressure for the "external fluid without flow.

Our formulation is now associated to a software of acoustic modelisation but
computational results are not the purpose of this paper.
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Figure 4 - Matrix representing the coupled global system
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