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ABSTRACT

A total variational formulation of vibro-acoustic interaction between vibrating membrane and a
visco-thermal fluid layer was investigated. This formulation combines a new variational
formulation by integral equations of the fluid, which taking into account of acoustic and
entropic waves coupling, with a classical variational formulation of the membrane. Thk
formulation has been implemented numerically for the problems with revolution geometry. The
obtained numerical results are compared to analytical ones developed for three models : perfect
fluid model, visco-thermal fluid model which coupling acoustic and entropic waves (developed
in this work) and visco-thermal fluid model which coupling acoustic, entropic and shear waves.
These comparisons showed the validity of our formulation proposed in this work and the
importance of the effects of entropic and shear waves on the darnping of modes of coupling
fluid-structure system tmd the decrease of their natural frequencies in the case of the micro-
cavities.

1. INTRODUCTION

The study of acoustic propagation in a visco-thermal fluid has received a lot of interest during
the last twenty years, with the development of miniaturised transducers. When the thickness of
the gap which separates the membrane from a rigid electrode is comparable with the size of the
viscous and thermal boundary layer, the account of viscosity and thermal conductivity of the
fluid filling the cavity becomes necessary [1-3].

For simple geometry, an analytic solution can be established [4]. However for complex
geometries, the recourse to numerical solutions proves necessary.

This work presents the study of the acoustic propagation problem in the gap between the two
electrodes. We consider that the rotational velocity is parallel to the frontiers, thus we
decoupled the problem of calculation of acoustic and entropic pressures from that of rotational



velocity. To solve this problem, we have developed a total variational formulation by coupling
a variational formulation by integral equations of the fluid with a classical variational
formulation of the membrane. This formulation has been implemented numerically for the
problems with revolution geometry.

2. EQUATIONS OF COUPLED PROBLEM

We consider a visco-thermal fluid domain ~ (Figure 1) surrounded by a surface Sp where the
pressure is imposed to (0), a surface Sv where the velocity is imposed to (0) and an elastic
membrane which is stretched and clamped at its periphery and excited by a mechanical charge
p.. We are in presence of a coupling vibro-acoustic problem where we have to resolve the
equation governing the motion of the membrane and the linear acoustic equations in a visco-
thermal fluid.

2.1. Equation of motion of membrane

The equation governing the motion of the membrane is written for harmonic excitation as :
(1)-T Aw–p,02w=p–p~

W=o on ar (2)

T is the tension per unit length of the membrane, w is the transverse displacement of the
membrane, p. is the mass per unit area of the membrane, p is the inside pressure, p. is the

outside known pressure and ~l_’is the periphery of the membrane.

2.2. Equations of the linear acoustic in a vko-thermal fluid

For harmonic motion (at= -ire), the set of linear homogeneous equations governing small
amplitude disturbances, includes the following [1] :

P=pa+ph (3)

(A+k~)p, =O (4)

where p, is the acoustic pressure, p~ is the entropic pressure, T. is the acoustic temperature,
T~is the entropic temperature, Q=is the irrotational velocity and V, is the rotational velocity.

~ is the increase in pressure per unit increase in temperature at constant density, y is the

dynamic viscosity, q is the bulk viscosity, pOis the density, x is the thermal difisivity, y is the
specific heat ratio and c is the adiabatic speed of sound.



To these equations, we associate the boundary conditions at the edge of fluid domain. We

consider that the normal component of rotational velocity is negligible as compared to the

irrotational velocity [5] and the temperature fluctuations are nil on the boundaries, so that we

have :

Over SP: p.=0 (lo) ph=o (11)

Over Sv: @ *a++haPh _()
‘x an

(12) T=z,p,+~~p~=O (13)

Over r: ~ **
+$, :;

ax
—= -iolw (14) (15)

3. VARIATIONAL FORMULATION

To resolve this problem, an integral representation of acoustic and entropic pressure is used :

Pa(x)= /G.edsy-s~y2dsy+s~edsy ‘=Q-(spusvm) ’16)
P v v

where p,, is the acoustic pressure at point Y, ii is the external normal vector of regions

containing fluid; G, and G~ are the elementary solutions of equations (4) and (5) in the flee

space.

The application of the boundary conditions (10-15) at integral representations of acoustic and
entropic pressures and their normal derivatives, gives taking into account the equation of
motion of membrane (1), the system of equations which enables us to determine the unknowns

+: apa
of the problem: (*J*) ‘Ver Sp (~ , P.) over Sv and (w,—an , pa ) over r.

To solve these equations, we have developed a total variational formulation of the fluid-
structure system. This formulation is obtained by coupling a variational formulation
equations of the fluid with a classical variational formulation of the structure [6]:

by integral

< Al >S XS + < A2 ‘Q$p + < ‘3 ‘SPXSV+ < At >rxs + < A5 ‘Spxr +
PP P

where the double integrals < Ai > are presented in the appendix A, w’ is the dual of w and p;
the dual of p..



The discretisation by finite boundary elements of the variational formulation (18) for the
problems with revolution geometry, permits to obtain after assembly the symmetrical matrix
system follows :

[:d-x}=(a (19)

Z, is the matrix of membrane impedance affected by the visco-thermal fluid, C is the coupling
- dpa

matrix between the membrane displacement w and the acoustic variables P (—an ?P, over Sv

aPa aph
‘r r ‘d x’=

over SP), D is the matrix of admittance of the fluid, Fw is the second

member du to the mechanical charge p~.

4. RESULTS AND DISCUSSION

In this section we consider a vibro-acoustic interaction problem between a vibrating membrane
and a cylindrical air layer considered visco-thermal fluid (Figure 1). The membrane was made
out of titanium with a thickness of 10-5m and a density pm of 4500 Kg/m3, the tension applied

at the periphery of the membrane is T=387.5 N/m. The physical properties of air are: pO=
1.1614 Kg/ins, c = 340 rids, p = 184.610-7 Ns/mZ, q = 11010-7 Ns/mz, ~ = 458 N/(mz “K), ~
= 22.5 104 m7s, y = 1.403. The temperature fluctuations are assumed to be null at all
boundaries. The pressure is zero at the boundary (r = R). The speed is null at the boundary (z
= - L/2) and at the boundary (z = L/2), we have imposed a uniform driving force per unit area
p.= 1 N/mz. All results presented in this paper are nondimensionalized by referring them to

the following parameters : p, (the density), c (the adiabatic speed of sound), L (the height of
the cavity) and TO= 293° K (the ambient temperature).

The figures 2 and 3 show respectively the modus of acoustic pressure at point Al and the
displacement of the membrane center versus to the frequency. The obtained peaks correspond
to the four first natural frequencies of the coupled membrane-cavity system. the three first ones
are associated to the membrane modes 01, 02 and 03 and the fourth one is associated to the
cavity mode 010. The Numerical and analytical results of visco-thermal fluid model, which
taking into account of acoustic and entropic waves coupling, are in good agreement and are
clearly different from those of perfect fluid model. One clearly sees a a small darnping of the
three first modes and a great damping of the fourth mode and a decrease of its natural
frequency about 17%.

By taking into account of the normal component of rotational velocity, the acoustic, entropic
and shear waves are coupled at the boundary conditions level. This complete model was
investigated by Bruneau [4]. The analytic results obtained by this model show the importance
of the effects of the shear wave on the damping of coupled membrane-cavity system modes.

5. CONCLUSION

To expect by the calcul the vibro-acoustic behaviour of miniaturised transducers, A total
variational formulation of vibro-acoustic interaction between vibrating membrane and a visco-
thermal fluid layer was investigated. This formulation combines a new variational formulation
by integral equations of the fluid, which taking into account of acoustic and entropic waves



coupling, with a classical variational formulation of the membrane. The numerical results
predicted by this formulation for the problems with revolution geometry are in good agreement
with analytic ones and show the effects of acoustic and entropic waves coupling on the cavity-
membrane system modes. However, the coupling of the shear wave with acoustic and entropic
waves remains to be integrated in this numerical work. Indeed the analytic results show the
importance of the shear wave effects on the damping of the cavity-membrane system modes.
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Fig. 1 membrane coupled to a cavity filled with a viscothermal
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Fig. 2 Modulus of acoustic pressure at point Al versus frequency. (— ) analytical peflect
fluid, (—) analytical viscothermal fluid (coupling acoustic and entropic waves), (o )
numerical viscothermal fluid (coupling acoustic and entropic waves), model of Bruneau
1990 (coupling acoustic, entropic and shear waves).
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Fig. 3 Modulus of displacement of membrane center versus frequency. (—) analytical perfect
fluid, (—) analytical viscothermal fluid (coupliig acoustic and entropic waves), (0 )
numerical viscothermal fluid (coupling acoustic and entropic waves), model of Bruneau
1990 (coupling acoustic, entropic and shear waves).



APPENDIX A

The integrals e Ai > presented in the first member of variational formulation (18) are

given by:

aGa apa $, aGh
b’)’ >s Xsp +– — P*Y(~)’ >svxsp + < -— — PaY(~ ,< Az >Svxs = < an

P @a any

<G ai 3P. , ~ G, ~ @’ ‘Svxsp ‘a< $j#’s”xsp+< ~ y x
Y x a
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where for example < ● >Spxs =
JJ

( ● dSy) dSx.
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