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ABSTRACT

The force acting on the reciprocating piston during a compression cycle shows typically non-

linear dynamic behavior in electrodynamics piston compressors. In order to increase the

efficiency in design, in this paper, the compression cycle is modeled as a linear spring and a

hysteretic darnper by 4 different methods. Hysteretic damping coefllcient is obtained in all

of the 4 methods based on the dissipation energy equivalency corresponding to the area of

pressure-volume diagram. Regarding the stiffness, the simplest method is to use the slope of

two extreme points in the diagram. Another simple method is to derive the stiffness

coefllcient by applying piecewise equivalency of the potential energy. The other two

methods are to apply describing function approach to the compression cycle alone and a

single degree of freedom system comprising the reciprocating compressor cycle.

Characteristics of the 4 linearized dynamic models are compared with the fill nonlinear

model, which are obtained by numerical integration for various parameters.

1. INTRODUCTION

Electrodynamics piston compressor is a small hermetic reciprocating compressor that is driven

by a linear oscillating motor. Compressors of this kind have been studied through the years

owing to its potential in cost reduction and efllciency increase[l -7]. Their basic structure is

very simple; the piston is directly connected to the oscillating part of the linear oscillating

motor and the cylinder is rigidly attached to the stationary part. Dynamics of the piston is,

however, complicated, i.e., it is closely linked with electrodynamics and thermodynamics,

because motion of the piston is not cinematically restricted.



The electrodynamics piston compressor which is the object in this study is schematically

presented in Fig. 1. This is a simplified model commonly known as a Doelz compressor.

Cylinder is assumed not to vibrate, and the dynamics of valve is neglected. Heat loss and

valve loss are neglected. Therefore, polytropic processes of compression cycle are assumed

to be isentropic processes, and suction and discharge processes to be isobaric.

In the mathematical modeling of this compressor, the pressure force acting on the piston due

to compression cycle can be dealt within two ways. One way is with an equivalent stiffness

and darnping[ 1,2] and the other way is with pressure difference between the front and back

surfaces of piston and thermodynamic equations[3,6,7]. The latter is more accurate, but the

mathematical model is nonlinear and, hence, the steady-state response can be obtained only by

numerical integration. This makes it difficult and tedious to analyze the effects of system

parameters. In the former, the equivalent stiffness and damping are assumed constant at a

given design stroke and mean position of the piston, so that the mathematical model is linear

and therefore can be solved analytically.

In this paper, 4 different methods are applied to model the pressure force with an equivalent

stiffness and damping. To verifi the usability of linear modeling in design, two system

parameters of the compressor which has a capacity of a heat lift of 150 Watts from -23°C to

32°C are determined using a linearized model, and the results of the 4 different linear models

and nonlinear model of this compressor are compared.

m = effective moving mass

c = viscous damping coefficient between

piston and cylinder wall

k = stiffness of tuning spring

pd = discharge pressure

P,= suction pressure

P,= pressure in compression chamber

pb = back pressure

c F.= thrust of linear oscillating motor

XP = static equilibrium position of piston

in quiescence

X0= mean position of piston motion

x = displacement of piston from cylinder

head

u = displacement of piston from

position of piston motion

mean

Fig. 1 Schematic drawing of the electrodynamics piston compressor

2. NONLINEAR MATHEMATICAL MODEL

A typical pressure-volume diagram of an ideal compression cycle is shown in Fig. 2.



Pc

A
<3 2

pa

U = amplitude of piston

UO= offset of equivalent spring

pb i
u j. u \ +V

4 N
Xo UC)

4 w

Fig. 2 Ideal pressure-volume diagram of compression cycle

If the cross-sectional area of the cylinder is constant through the whole stroke of the piston,

the pressure in compression chamber can be written by

()

n

Pc(t) = P, ~ if P~<P, then P,= P,, andif P, >pdthenp. =pd (1)
x(t)

where P, and X, respectively are pd and (XO-U) for the positive stroke, and P, and (XO+U) for

the negative stroke, and n the specific heat ratio. The pressure force F~ acting on the piston

is given by

F,(t)= A,(PC(t)- P,) (2)

where AP is cross-sectional area of the piston.

Because the pressure force contains static force component, the governing equation of motion

of the piston must satisfy static force equilibrium as well as dynamic force equilibrium as

follows:

d’x(t) dx(t)
—+c~+kC(x(t) –XP)– F,(t) =F~(t)

m dt2

The thrust of a linear oscillating motor F~(t) is given by

(3)

cti(t), where ct is a constant linking

the thrust and current i(t) in the motor. Effective moving mass m includes the piston mass

with driving coil and a portion of the tuning spring mass. The viscous damping coefficient c

represents the effect of the oil fiction between the piston and cylinder wall[2,7].

The voltage equation of electrodynarnic linear oscillating motor can be written as

dx(t) + ~ di(t)

a dt
~~ + R~i(t) = v(t) (4)

where L. and ~ are the effective inductance and resistance respectively[2], and v(t) the supply

voltage.

These equations are solved numerically by the 4th order Runge-Kutta method.

3. LINEAR MATHEMATICAL MODEL

In this compressor, the mechanical spring is used to tune the resonance frequency, and if the



spring is not so soft then motion of the piston is nearly harmonic[2,6]. Thus, assuming that

the piston does harmonic motion of u(t)=Ucos@t across the mean position XO,displacement of

the piston relative to the cylinder head is represented by

x(t) =X. + u(t) (5)

and the pressure force is modeled as below using the equivalent hysteretic damping

coefficient & and spring constant ~,

hw du(t)
F,(t) =-~~-k,,(u(t)-Uo) (6)

where UOis an offset of the equivalent spring from the mean position XO.

The pressure force in equation (6) is divided into the static and dynamic components, so that

the governing equations can also be divided into the static equilibrium and dynamic

equilibrium equations as follows:

For the static equilibrium,

k(xo –XP)–k#o = O

For the dynamic equilibrium,

‘~+[c+:)~+(kc+k.q)u(t)=ti(t)

d2u(t)

du(t) + ~ di(t)

a dt
, ~ + R~i(t) = v(t)

.
(7)

(8)

(9)

These equations can be solved analytically in frequency domain using complex notation if the

equivalent stiflhess and damping are defined.

The equivalent damping is defined as a hysteretic damping based on dissipation energy

equivalency corresponding to the area of pressure-volume diagram. This area, which means

work done per cycle by compressor, can be defined as follows:

(lo)

where rP is the ratio of discharge to suction pressure. Therefore, the equivalent hysteretic

damping coefllcients can be written by

h., = ~ (11)

The equivalent stiffness is defined by 4 different methods. The simplest method is,

following Cadman[l], to use the slope of two extreme points 1 and 3 in Fig. 2. According

to this method, the equivalent spring constant and offset can be represented as follows:

AP(P~ –P,
k., =

)
2U

(12)

u =U+AP(P, -P,)
o k eq

(13)



Another simple method is to apply piecewise equivalency of the potential energy. In a

linear spring-damper system, the same amount of dissipation energy is always dissipated

every quarter cycle. The potential energy is, however, alternately stored and released in the

same amount over each quarter cycle, or vice versa, if we consider the half cycle of oscillation

from the mean position. Therefore the difference between works done on this system over

two successive quarter cycles from the mean position becomes the double of variation of the

potential energy over one quarter cycle. Using these relations, the equivalent spring constant

and offset can be written by

k = (AWa_3- AW3_b)+ (AWb_, - AW1_a)
w 2U2

(14)

(AWa_3– AW3_b) – (AWb_l – Awl_=
u, = )

4kwU
(15)

where AWi.jis the variation of energy through the path from point i to point j in Fig. 2.

The third method is to apply the describing function approach[8] to the compression cycle

only. With the displacement of piston as input and the pressure force as output, the

describing fimction is obtained by numerical integration as follows:

N(U,O) = ~(al + jbl) (16)

where U is the amplitude of the piston displacement. Then equivalent spring constant and

hysteretic damping coefficient can be obtained by comparing this equation with the equation

(6) as follows:

(17)

(18)

With simple manipulation, we can see that the equation(18) is identical with the equation (1 1).

In the describing function method, the nonlinearity is ~ften assumed odd, that is, the dc-

component neglected. In this case, however, it can not be neglected because the dc-

component given by the static equilibrium is dependent inherently on the parameters of the

compression cycle as shown in equation (6) and (7). Using the de-component, the offset of

equivalent spring is obtained as follows:

; pg(oMdU,=% ,where aO=–
eq

(19)

The fourth method is to apply the describing function approach to a single degree of

freedom system (SDFS) the motion of which is governed by

d2x(t) +C &(t)

m dt2 (
—+kC x(t) –XP)– F$t) = FcOS@t

dt
(20)

First, appropriate values of m, c and L are assumed in the acceptable design range and, then,

XP is determined in order that the min. and max. values of x may be coincident with the design



values using iterative numerical integration.

To obtain the describing function, the magnitude F is controlled, in such a way that the min.

and max. values of x may be kept constant, because the shape of F~ vs. x depends on these.

The undamped natural frequency conis determined by selecting a frequency point where the

real part of the describing fimction becomes zero, when F~ is modeled by equation (6). Then,

the equivalent spring constant is obtained by

and the offset of equivalent spring is obtained using equation (7) as follows:

kC(XO- XP
u,= k )

w

(21)

(22)

4. APPLICATION AND THE RESULTS

Among the compression cycles, which have the capacity of a heat lift of 150Watts from -23°C

to 32°C when the driving frequency is 60Hz, one is described as follows:

Pd= 1468.6 kPa, P,= 115.43 kpa, Pb= 115.43 @a, n= 1.118

Ap= 100n mm2, Xo = 11.0355 mm, u = 10.0355mm

The equivalent hysteretic damping coefilcient of this compression cycle was obtained as

3795.08 N/m, and the other parameters were obtained by each method as the following table.

Method k, [ wim ] Ucl[mm]

the slope of two extreme points 21.157 10.0565

piecewise equivalency of the potential energy 10.456 5.7465

describing function of compression cycle 15.155 6.1215

describing fhnction of SDFS 14.455 4.1595

When constructing the single degree of freedom system, the mass was assumed as 1.0 kg, the

stiffness as 131.91 kN/m and viscous damping coefficient as 6.0 N“sec/m.

The effective mass and tuning spring were determined using the linearized model so that this

compressor could produce the designed output at 220Vrrns 60Hz and resonate at 57 Hz for the

given electrodynamics linear oscillating motor. These were determined using linear model

whose equivalent coefficients were obtained by applying describing function method to SDFS,

and they are

m = 1.546 kg, k = 160.41 kN/m, XP = 10.66 mm

The characteristics of this compressor were obtained using the nonlinear mathematical model.

When solving the nonlinear model, the mean position was changed according to the driving

frequency. Therefore, the input voltage was controlled to maintain that the top clearance,

which is the distance between cylinder head and top dead center, was constant. In order to

compare the results with those of linear mathematical models, the half of peak-to-peak value

was assumed as amplitude. The frequency response characteristics are presented in the

following figures with the deviations of the results of each linear model fkom those of



nonlinear model.

As shown in Fig. 3, simulation results based on the nonlinear model confirm that this

compressor has resonance at 57 Hz as initially intended. When the driving frequency was

60Hz, the input voltage was218.2Vrrns and input current was 3.8A for lmm of top clearance.

That is, deviation of the voltage from the design value was -0.8V0 and deviation of the stroke

was 0.4°/0 and therefore, to meet the exact design target, the XP must be increased about 0.4°/0.
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Fig.3 Frequency response characteristics of piston movement/supplied voltage and errors

linearized models with respect to the filly nonlipear model.
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Fig.4 Frequency response characteristics of piston movementisupplied current and errors

linearized models with respect to the filly nonlinear model.
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The resonance frequency of the linear model by the slope of two extreme points is higher than

that of the nonlinear model as shown in Fig. 3, which means that the equivalent spring

estimated by this method is stronger than the true one by about 44°/0. In case of the

piecewise equivalency of the potential energy, the equivalent spring was estimated to be softer

than the true one by about 28%.

As shown in Fig. 3 and 4, discrepancies between two describing function approaches for the

linearization are very small, and both of them agree well with the nonlinear model within a

few percents of error. The equivalent spring was estimated to be slightly stronger than the

true one by the describing fi.mction approach to compression cycle only, and slightly softer by

the other describing function approach. In case of error in frequency response characteristics,



the root-mean-squared error of the latter approach was about 0.6-0.7% smaller than that of the

former approach, but in case of computing time, it took about 1200 times longer. Although

it is better approximation theoretically to apply the describing fimction approach to single

degree of freedom model, it takes too much time for the iterative numerical integration as in

the nonlinear model. Therefore, in a point of effectiveness the former is preferred.

5. CONCLUSIONS

Accuracy and effectiveness of four different linearized approaches for the modeling of an

electrodynamics piston compressor were studied. The results of the describing function

approaches agreed quite well with those of the nonlinear mathematical model. It is preferred

to apply the describing fimction approach to compression cycle only in the aspect of

computational effectiveness. Although it was not presented in this paper, the amplitude

dependent nonlinear characteristics, like jump phenomena, also can be investigated by this

approach.
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