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ABSTRACT
Using a bubbly liquid is an economical and effective technique in controlling underwater
sourid signals. When an acoustic wave passes through a bubbly liquid, some of the energy is
reflected and some is lost due to dissipation. As a result, the transmitted signal would be
attenuated. In this paper, a harmonic signal enclosed by a cylindrical bubbly layer is studied
in the presence of different boundaries. By using the classical theory for dilute bubbly liquid
and numerical integration, the transmitted waves through a thin layer are determined.
Furthermore, experiment results of a cylindrical bubbly layer with finite air volume fraction
around 107o are obtained and compared with those calculated from the dilute bubbly liquid
theory. It is found that there is a remarkable difference between the results. Discussion is
given for the explanation of the phenomenon and the design of bubbly layer for underwater
sound control.

INTRODUCTION
Effect of air bubbles on underwater sound transmission has been studied for a few decades
since bubbly layers play an important role in the underwater environmental and military
engineering. Due to the nonlinearity and randomness of the mixture, physics of a bubbly
liquid is difficult to be studied. However, linear theory for dilute bubbly liquid can be

obtained. In this paper, bubbles are assumed to be small and spherical with equilibrium radius
much shorter than the wavelength of the incident signal. As a result, the pressure inside a

bubble can be treated as uniform and the bubble oscillates in simple harmonic motion. By
applying Calflisch et al.’s theory (1985), the effective sound speed for a bubbly liquid is
found. Due to the strong dispersive effect of a bubbly liquid, the effective sound speed is
highly dependent on the incoming frequency. In order to apply the technique to real

engineering problems, a harmonic point source enclosed by a cylindrical bubbly layer is
considered. By using Taylor’s expansion and numerical integration, transmitted pressure
fields through a thin cylindrical bubbly layer are obtained in an infinite domain, near a free



surface and near a flat sea floor. In addition, a bubbly liquid with finite air volume fraction
around 0.1 is studied experimentally. Compared with theoretical results, the transmission
coefficients measured from experiments are much higher than those predicted by the theory.
It seems that the classical theory cannot be applied to the bubbly liquid with a finite air
volume fraction.

EFFECTIVE WAVE NUMBER IN A DILUTE BUBBLY LIQUID
If bubbles are evenly distributed in the liquid and the radii of the bubbles are small compared
with the wavelength of the signal, the medium can be considered as a homogeneous one with
an effective sound speed. When a small spherical bubble with equilibrium radius ROis driven

by an acoustic wave with angular frequency co, the instantaneous radius R’ obeys the
linearized Rayleigh Equation
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where p is the pressure, pOthe mean density, coO== the bubble resonant

frequency and a time dependent factor e-imtis omitted. In this case, the bubble behaves as a
monopole. Applying Caflisch
bubbly liquid is found to be
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et al.’s theory (1985), the effective wave number for a dilute
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where POis the air volume fraction of the liquid and k the wave number in pure liquid. The
above expression neglects the effect of dissipation due to damping and viscosity. In order to
take into account the damping effect of bubbles, the Rayleigh Equation must be modified by
adding several damping terms into the equation. However, in this paper, only the simple
expression kb in Eq. (2) is considered.

For acoustic signals with frequencies below the bubble resonance frequency, the effective
speed of sound is lower than that in pure liquid because of the increase in compressibility of
the medium. When the incident frequency moves beyond the resonance frequency, the wave
number becomes a positive purely imaginary number which means that there is no
propagating mode but damping in the medium. Hsieh (1988) called it the “Dead Zone”. As

the frequency further increases to a critical value %, which is called the anti-resonance

frequency, a propagating mode appears again. The value of w depends on the bubble

resonance frequency as well as the air volume fraction. However, this theory is not applicable
to high frequency signals because the signal wavelength is comparable to the bubble radii.

PROPAGATION OF LOW FREQUENCY SIGNAL THROUGH A THIN
CYLINDRICAL BUBBLY LAYER
Consider a cylindrical bubbly layer with inner radius rl and thickness s with a point source
placed along the symmetry axis in an infinite domain (Fig. 1). The signal frequency is assumed
to be smaller than the bubble resonance frequency so that kb is positive and real. Denote the
inner and outer liquid regions by L1 and Lz respectively and the bubbly region by B. The



governing equations for harmonic signals with a time factor e-iut in Lj (j= 1,2) are the reduced
wave equations
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and

V202 +k2$2 = O (4)

respectively, where k is the wave number in pure liquid at the equilibrium state and @is the
velocity potential. The reduced wave equation for region B is

V2$b +k:$~ = O. (5)

On the surfaces of the bubbly liquid, the continuity of pressure and normal velocity implies

and
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on rl and r2 where rz= rl+s. By taking Fourier transform on z, the transmitted velocity

potential is found to be

(8)

where
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and

k~, = ~k~ –k: . (11)

H $) and H ~) are the zeroth order Hankel function of the first and second kind respective y.

If the thickness of the bubbly layer is small compared with the incident wavelength (ks <<1)

and the inner radius of the cylindrical layer (scerl ), we can approximate A by expanding the
Hankel functions with arguments kcrz and kb,r2 in Taylor series as

H(krq) = H(k,r,)+(krs)H’(krr,)+o[(k,s)2] (12)

and

H(kbrr2)= H(kbr,)+(kbrs)H’(kbrr,)+O[(kb,s)2].
Substituting the above into Eq. (8) and using some Hakel function relations, we obtain

. -1

(13)
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Analytical evaluation of the integral is impossible. In order to evaluate the integral
numerically, we have to prove that the value within the interval is finite. A simple test is
being used. The integral is evaluated numerically within a small interval around the
singularity. The interval is divided into 512, 1024, 2048 and 5096 divisions respectively. The
result shows that, omitting round-up errors, the values obtained from the four “resolutions”
are nearly equal with accuracy up to four significant figures. It is seen that the integral in Eq.
(14) has a finite value and is evaluated numerically by Simpson’s rule.

Based on similar methods, the transmitted potentials of a point source through a thin
cylindrical bubbly layer near a free surface and near a flat sea floor are evaluated numerically.
Some of the results are shown from Fig. 2 to Fig. 7.

EXPERIMENTAL STUDY
Experiments are implemented in a small water tank with dimensions 1.8m x 1.2m x 0.5m. A
sketch of the experimental apparatus is shown in Fig. 8. To make the bubbly layer, a flexible
porous material is used as a bubble maker and is curved into a circle with inner radius of
12cm. Dry compressed air is injected into the bubble maker through a regulator and a
flowmeter from an air compressor. A cylindrical bubbly layer of thickness lcm is produced
and the bubble radius lies between 1mm to 2mm. A hydrophore (B&K 8104) is placed along
the symmetry axis of the layer as a sound source. On the other hand, the transmitted signal is
picked up by a smaller hydrophore (B&K 8103) outside the bubbly layer. The input and
output of the signal are controlled by a signal analyzer unit (B&K 2035A) with a 25kHz input
module (B&K 301 9) and a generator module (B&K 3106) installed. From Fig. 8, it is seen
that a sound signal is generated from the analyzer and is amplified by a power amplifier (B&K
2713) before emitted from the hydrophore. The received signal is transmitted back to the
analyzer. The data are then read by a PC through an IEEE 488 interface for further analysis.
The PC is also connected to two XYZ tables for controlling the movements of the
hydrophores.

In order to study the free field behavior of the system, reflected waves from the tank walls
must be eliminated. This is done by capturing the free field time interval i.e. the time before
receiving the reflected waves. For sinusoidal waves, their amplitudes are measured. To
obtain an accurate result, the wavelength and frequency of an acoustic signal should be much
smaller than the tank dimensions and the sampling rate of the analyzer respectively. The free
field time interval (known as the reverberation time) in the water tank is about 0.35ms

(approximately 8.7 cycles for a 25kHz signal). A train of sinusoidal waves is emitted and
experiments show that the wave will reach steady state within a cycle. At each point, 100
measures are taken in which the mean and the standard deviation are calculated.

To study the behavior of the system with a water surface, one must include the reflected wave
from the free surface. Measurement is started from the instant after the incidence of the wave
reflected from the surface to the moment before the arrival of the other reflected waves. The
source is placed near the surface in order to increase the time interval. Similar approach can
be applied to study the case with a solid bottom. Results for a 25kHz point source through a
cylindrical bubbly layer with air volume fraction around 0.1 are shown from Fig. 9 to Fig. 14.
The graph of the average transmission coefficients against different incident frequencies is
plotted in Fig. 15.



DISCUSSION
The reason for choosing a thin bubbly layer as an underwater sound attenuator is that, if the
thickness of a bubbly layer is larger than the incident wavelength, there is a layer resonance
when the incident frequency coincides with one of the eigenfrequencies of the bubbly layer
(Yeung & Chwang 1996). As a result, the transmission coefficient will be boosted up.

As seen from Fig. 2 to Fig. 7, the distortion of the transmitted pressure fields by the thin
cylindrical bubbly layer is very small. This can be verified experimentally from Fig. 9 to Fig.
14. However, the layer does reduce the sound levels of the signal as illustrated from the
figures. The resonant frequency of bubbles set for numerical calculation is 5kHz. If the
incident frequency is above that resonant frequency, the bubbly layer reaches the “Dead
Zone” with its range dependent on the air volume fraction as indicated in Eq. (2). The
transmitted pressure calculated within the “Dead Zone” approaches zero which means that
waves cannot propagate through the “Dead Zone” and nearly all of the energy is reflected
back. This theory, supported by previous experimental results (Commander & Prosperetti
1988), may be valid for very dilute bubbly liquid in which the “Dead Zone” is very narrow.

For finite air volume fraction, experimental results indicate that dilute bubbly liquid theory
cannot be applied. The transmission coefficients obtained in the experiments are much larger
than those predicted by the theory. It seems that the “Dead Zone” phenomenon does not
appear in the system. At finite air volume fractions, interaction between bubbles in the liquid
cannot be neglected. Including the randomness and nonlinear effects of the system, bubbles
may not be sensitive to the incoming waves. Furthermore, in reality, bubbles are not
stationary but in random motions. As a result, pressures recorded at each point fluctuate. It is
seen that the distributions are normal with their mean values obeying the inverse square law
along the line. Due to the influence of a bubbly layer, pressure fluctuations are at maximum
when the point is near the layer. The standard deviation decreases as the observing point
moves away from the layer.

CONCLUSIONS
By using the classical theory for a dilute bubbly liquid, the transmission of an acoustic wave
through a thin cylindrical bubbly layer is obtained. At frequencies higher than the bubble
resonant frequency, due to the “Dead Zone” effect, the transmission coefficients are very low.
The “Dead Zone” range depends on the air volume fraction of the liquid. However, for a
bubbly liquid with finite air volume fraction, theoretical results cannot be applied and the
transmission coefficients obtained experimentally are much higher than those predicted by the
theory.
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Fig.2 A2500Hz point source located at(0,0)
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Fig.4 A2500Hz point source located at(0,-O.6)
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Fig. 6 A 2500Hz point source Ioeated at (0,0.6)
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Fig. 7 A 2500Hz point source located at (0,0.6)
near a solid bottom with a bubbly layer
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Fig. 8 Experimental setup
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Fig. 9 Experimental result of a 25kHz point source located at (0,0)
in free field without a bubbly layer
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Fig. 10 Experimental result of a 25kHz point source located at (0,0)
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Fig. 11 Experimental result of a 25kHz point source
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Fig. 13 Expcnmental result of a 25kHz point source

located at (0,0.6) near a solid bottom without
a bubbly layer
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Fig. 14 Experimental result of a 25kHz point source
located at (0,0.6) near a solid bottom with

a bubbly layer (~o-O. 1, fo-3000Hz,
bubbly layer located between the dotted lines)
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Fig. 15 Transmission coefficient versus frequency with ~o-O. 1


