FIFTH INTERNATIONAL CONGRESS ON SOUND AND VIBRATION
DECEMBER 15-18, 1997
ADELAIDE, SOUTH AUSTRALIA

# AN ELLIPTIC PERTURBATION METHOD FOR CERTAIN STRONGLY NON-LINEAR ROTORS 

## Livija Cveticanin

Faculty of Technical Sciences, Trg D. Obradovica 6, 21000 Novi Sad, Yugoslavia


#### Abstract

An elliptic perturbation method is developed for calculating solutions of strongly nonlinear systems of the form $\ddot{z}+c_{1} z+c_{3} z^{3}=\varepsilon f(z, \dot{z}, c c)$, where $z$ is the complex deflection function. The Jacobian elliptic functions are employed instead of the usual circular functions. The suggested procedure can give also a second approximate solution. The method is applied for the equation which describes cyclic motion. The analytically obtained results are compared with numerical ones. They show a good agreement.


## INTRODUCTION

The vibrations of the rotors are usually described with differential equations with complex functions. Due to nonlinear properties of the rotors the differential equations are also nonlinear. These non-linearities are not only weak but very often strong. To solve these equations various asymptotic methods are developed [1-9]. When the non-linearity is of cubic type the generating solution is a complex function of two Jacobian elliptic functions [2,4,7]. If beside the strong cubic nonlinear term also weak non-linearities exist, the perturbation methods based on the Bogolubov-Mitropolski method [4], Krylov-Bogolubov [2] and Elliptic-Krylov-Bogolubov [7,8] method are developed. For all of them it is common that the methods are correct only for small non-linearities.
In this paper a perturbation method developed for the systems with one degree of freedom [9] is extended for systems with two degrees of freedom described with complex function. The method is applicable not only for small but also large values of parameter $\varepsilon$ but it is correct only for a strictly defined group of problems. The constraints of the method are discussed in the paper. An
example with nonlinear gyroscopic force is discussed. The analytically obtained results are compared with numerical ones.

## MATHEMATICAL MODEL

The mathematical model of the strong nonlinear rotor system is assumed as

$$
\begin{equation*}
\ddot{z}+c_{1} z+c_{3} z^{3}=\varepsilon f(z, \dot{z}, c c) \tag{1}
\end{equation*}
$$

where $z$ is the complex deflection function, $x_{y} y$ are the coordinates of rotor center, $c_{1}$ is the coefficient of linear and $c_{3}$ of nonlinear terms, $f$ is the nonlinear function, $c c$ is the complex conjugate function and $\varepsilon$ is the small parameter. The equation (1) is a strong nonlinear differential equation with complex function. If the parameter $\varepsilon$ is negligible the differential equation transforms to

$$
\begin{equation*}
\ddot{z}+c_{1} z+c_{3} z^{3}=0, \tag{2}
\end{equation*}
$$

where $z=x+i y$ is the complex function, $x_{1} y$ are coordinates, $i=(-1)^{1 / 2}, c_{1}, c_{3}$ are coefficients of the linear and cubic term. It represents the generating equation. For $c_{1}>0, c_{3}>0$ the solution is

$$
\begin{equation*}
z=A_{0}[\operatorname{cn}(\tau, k)+i \operatorname{sn}(\tau, k)], \quad \tau=\Omega_{0} t \tag{3}
\end{equation*}
$$

where $\mathrm{cn}(\tau, k)$ and $\operatorname{sn}(\tau, k)$ are cosine and sine Jacobian elliptic functions, $A_{0}, \Omega_{0}, k$ are called the amplitude, the angular frequency and the modulus of the elliptic functions, respectively. The first and the second time derivatives of the function (3) are

$$
\begin{align*}
& \dot{z}=\frac{d z}{d \tau} \frac{d \tau}{d t}=-A_{0} i \operatorname{dn}(\tau, k)[\operatorname{cn}(\tau, k)+i \operatorname{sn}(\tau, k)], \\
& \ddot{z}=\frac{d \dot{z}}{d \tau} \frac{d \tau}{d t}=-\Omega_{0}^{2} A_{0}\left(i k^{2} \operatorname{sncn}[\operatorname{cn}(\tau, k)+i \operatorname{sn}(\tau, k)],\right. \tag{4}
\end{align*}
$$

where $\operatorname{dn}(\tau, k)$ is the Jacobian elliptic function. Substituting equations (3) and (4) into (2), separating the real and imaginary parts and equating the coefficients of cn and $\mathrm{cn}^{3}$ to zero we obtain

$$
\begin{equation*}
\Omega_{0}^{2}=c_{1}+c_{3} A_{0}^{2}, \quad \quad k^{2}=\frac{2 c_{3} A_{0}^{2}}{\Omega_{0}^{2}} \tag{5}
\end{equation*}
$$

## THE ELLIPTIC PERTURBATION METHOD

The eq.(1) can be written in the form
$\ddot{x}+c_{1} x+c_{3}\left(x^{3}-3 x y^{2}\right)=\varepsilon f_{1}$,
$\ddot{y}+c_{1} y+c_{3}\left(3 x^{2} y-y^{3}\right)=\varepsilon f_{2}$,
where $f_{1}$ and $f_{2}$ are the real and imaginary components of non-linearity, respectively. We assume the solution of the equations (6) in the form of a series $x=x_{0}+\varepsilon x_{1}+\ldots, y=y_{0}+\varepsilon y_{1}+\ldots$. In order to construct the correct solution which must include the parameter $\varepsilon$ we introduce a nonlinear transformation

$$
\begin{equation*}
x=A \operatorname{cn}(\tau, k), \quad y=A * \operatorname{sn}(\tau, k) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
A=A_{0}+\varepsilon A_{1}+\ldots, \quad A^{*}=A_{0}^{*}+\varepsilon A_{1}^{*}+\ldots \tag{8}
\end{equation*}
$$

The $A_{\mathrm{i}}$ and $A_{\mathrm{i}}{ }^{*}$ are constants. We assume that the frequency of vibrations has different values in $x$ and y direction ( $\Omega$ and $\Omega^{*}$ are not equal) and it is

$$
\begin{equation*}
\Omega=\frac{d \tau_{1}}{d t}=\Omega_{0}+\varepsilon \Omega_{1}(\tau)+\ldots, \quad \Omega^{*}=\Omega_{0}+\varepsilon \Omega_{1}^{*}(\tau)+\ldots \tag{9}
\end{equation*}
$$

The frequencies $\Omega_{1}, \Omega_{1}{ }^{*}, \ldots$ are dependent on $\tau$. Then the first and second time derivatives of (7) are

$$
\begin{align*}
& \dot{x}=\frac{d x}{d \tau_{1}} \frac{d \tau_{1}}{d t}=x_{0}^{\prime} \Omega_{0}+\varepsilon\left(x_{1}^{\prime} \Omega_{0}+x_{0}^{\prime} \Omega_{1}\right)+\varepsilon^{2}\left(x_{0}^{\prime} \Omega_{2}+x_{1}^{\prime} \Omega_{1}+x_{2}^{\prime} \Omega_{0}\right)+\ldots,  \tag{10}\\
& \dot{y}=\frac{d y}{d \tau_{2}} \frac{d \tau_{2}}{d t}=\Omega_{0} y_{0}^{\prime}+\varepsilon\left(\Omega_{0} y_{1}^{\prime}+\Omega_{1} y_{0}^{\prime}\right)+\varepsilon^{2}\left(\Omega_{2}^{*} y_{0}^{\prime}+\Omega_{1}^{*} y_{1}^{\prime}+\Omega_{0} y_{2}^{\prime}\right)+\ldots,  \tag{11}\\
& \ddot{x}=x_{0}^{\prime} \Omega_{0}^{2}+\varepsilon\left(x_{1}^{\prime} \Omega_{0}^{2}+2 \Omega_{0} \Omega_{1} x_{0}^{*}+x_{0}^{\prime} \Omega_{0} \Omega_{1}^{\prime}\right)+\varepsilon^{2}\left(x_{2}^{\prime} \Omega_{0}^{2}+2 \Omega_{0} \Omega_{1} x_{1}^{\prime}+x_{0}^{\prime} \Omega_{1}^{2}+x_{1}^{\prime} \Omega_{1}^{\prime}+x_{0}^{\prime} \Omega_{2}^{\prime}\right) \tag{12}
\end{align*}
$$

$\ddot{y}=y_{0}^{\prime} \Omega_{0}^{2}+\varepsilon\left(y_{1}^{\prime \prime} \Omega_{0}^{2}+2 \Omega_{0} \Omega_{1}^{*} y_{0}^{\prime \prime}+y_{0}^{\prime} \Omega_{0} \Omega_{1}^{*}\right)+\varepsilon^{2}\left(y_{2}^{\prime \prime} \Omega_{0}^{2}+2 \Omega_{0} \Omega_{1}^{*} y_{1}^{\prime \prime}+y_{0}^{*} \Omega_{1}^{* 2}+y_{1}^{\prime} \Omega_{1}^{* *}+y_{0}^{\prime} \Omega_{2}^{* *}\right)$,
where $x^{\prime} \equiv \frac{d x}{d \tau_{1}}, y_{0}^{\prime} \equiv \frac{d y_{0}}{d \tau_{2}}$.
Substituting (7)-(13) into (6) and separating the terms with the same values of parameter $\varepsilon$ a system of differential equations is obtained:

$$
\begin{array}{ll}
\varepsilon^{0}: & x_{0}^{*} \Omega_{0}^{2}+c_{1} x_{0}+c_{3}\left(x_{0}^{3}-3 x_{0} y_{0}^{2}\right)=0, \\
& y_{0}^{*} \Omega_{0}^{2}+c_{1} y_{0}+c_{3}\left(-y_{0}^{3}+3 x_{0}^{2} y_{0}\right)=0,  \tag{15}\\
\varepsilon^{1}: & x_{1}^{\prime} \Omega_{0}^{2}+2 \Omega_{0} \Omega_{1} x_{0}^{\prime \prime}+\Omega_{0} \Omega_{1} x_{0}^{\prime}+c_{1} x_{1}+c_{3}\left(3 x_{0}^{2} x_{1}-3 x_{1} y_{0}^{2}-6 x_{0} y_{0} y_{1}\right)=f_{1}\left(x_{0}, y_{0}, x_{0}^{\prime} \Omega_{0}, y_{0}^{\prime} \Omega_{0}\right), \\
& y_{1}^{\prime \prime} \Omega_{0}^{2}+2 \Omega_{0} \Omega_{1}^{* *} y_{0}^{*}+\Omega_{0} \Omega_{1}^{* *} y_{0}^{\prime}+c_{1} y_{1}+c_{3}\left(-3 y_{0}^{2} y_{1}+3 y_{1} x_{0}^{2}+6 x_{0} y_{0} x_{1}\right)=f_{2}\left(x_{0}, y_{0}, x_{0}^{\prime} \Omega_{0}, y_{0}^{\prime} \Omega_{0}\right),
\end{array}
$$

$\varepsilon^{2}$ :

$$
\dot{x_{2} \Omega_{0}^{2}}+2 \Omega_{0} \Omega_{1} x_{1}^{\prime \prime}+x_{0}^{\prime} \Omega_{1}^{2}+\Omega_{0} \Omega_{1}^{\prime} x_{1}^{\prime}+\Omega_{0} \Omega_{2}^{\prime} x_{0}^{\prime}+c_{1} x_{2}+c_{3}\left[3 x_{0} x_{1}^{2}+3 x_{2} x_{0}^{2}-3\left(x_{2} y_{0}^{2}+2 x_{1} y_{0} y_{1}+x_{0} y_{1}^{2}+2 x_{0} y_{2} y_{0}\right)\right]
$$

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial x} x_{1}+\frac{\partial f_{1}}{\partial y} y_{1}+\frac{\partial f_{1}}{\partial x^{\prime}}\left(x_{1}^{\prime} \Omega_{0}+x_{0}^{\prime} \Omega_{1}\right)+\frac{\partial f_{1}}{\partial y^{\prime}}\left(y_{1}^{\prime} \Omega_{0}+y_{0}^{\prime} \Omega_{1}^{*}\right), \tag{18}
\end{equation*}
$$

$y_{2}^{*} \Omega_{0}^{2}+2 \Omega_{0} \Omega_{1} y_{1}^{*}+y_{0}^{*} \Omega_{1}^{* 2}+\Omega_{0} \Omega_{1}^{\prime \prime} y_{1}^{\prime}+\Omega_{0} \Omega_{2}^{\prime \prime} y_{0}^{\prime}+c_{1} y_{2}-c_{3}\left[3 y_{0} y_{1}^{2}+3 y_{2} y_{0}^{2}-3\left(y_{2} x_{0}^{2}+2 y_{1} x_{0} x_{1}+y_{0} x_{1}^{2}+2 y_{0} x_{2} x_{0}\right)\right]=$ $\frac{\partial f_{2}}{\partial x} x_{1}+\frac{\partial f_{2}}{\partial y} y_{1}+\frac{\partial f_{2}}{\partial x^{\prime}}\left(x_{1}^{\prime} \Omega_{0}+x_{0}^{\prime} \Omega_{1}\right)+\frac{\partial f_{2}}{\partial y^{\prime}}\left(y_{1}^{\prime} \Omega_{0}+y_{0}^{\prime} \Omega_{1}^{\prime}\right)$,
where $f_{1} \equiv f_{1}\left(x_{0}, y_{0}, \Omega_{0} x_{0}^{\prime}, \Omega_{0} y_{0}^{\prime}\right)$, and $f_{2} \equiv f_{2}\left(x_{0}, y_{0}, \Omega_{0} x_{0}^{\prime}, \Omega_{0} y_{0}^{\prime}\right)$.
The solutions of (14) and (15) are as for the generating solution

$$
x_{0}=A_{0} \operatorname{cn}(\tau, k), \quad y_{0}=A_{0} \operatorname{sn}(\tau, k),
$$

where $\tau=\Omega_{0} t$.

To transform the equations (16) and (17) they have to be multiplied with $x_{0}{ }^{\prime}$ and $y_{0}$, respectively. The transformed equations are
$\left.\Omega_{0} \Omega_{1} x_{0}^{22}\right|_{0}=-\left.\Omega_{0}^{2} \frac{A_{1}}{A_{0}} x_{0}^{2^{2}}\right|_{0} ^{t}-\frac{A_{1}}{A_{0}}\left(c_{1} x_{0}^{2}+c_{3} x_{0}^{4}-\left.3 x_{0}^{2} y_{0}^{2} c_{3}\right|_{0} ^{t}-\left.3 \frac{A_{1}^{*}}{A_{0}} x_{0}^{2} y_{0}^{2} c_{3}\right|_{0} ^{t}-3 c_{3} \int_{0}^{t} x_{0}\left[2 y_{0}^{\prime} y_{0} \frac{A_{1}^{*}}{A_{0}} x_{0}+\right.\right.$
$\left.2 \frac{A_{1}}{A_{0}} y_{0} y_{0}^{\prime} x_{0}\right] d \tau+\int_{0}^{t} f_{1} x_{0}^{\prime} d \tau$,
$\left.\Omega_{0} \Omega_{1}^{*} y_{0}^{\prime 2}\right|_{0} ^{t}=-\left.\Omega_{0}^{2} \frac{A_{1}^{*}}{A_{0}} y_{0}^{\prime 2}\right|_{0} ^{t}-\frac{A_{1}^{*}}{A_{0}}\left(c_{1} y_{0}^{2}+c_{3} y_{0}^{4}-\left.3 x_{0}^{2} y_{0}^{2} c_{3}\right|_{0} ^{t}-\left.3 \frac{A_{1}}{A_{0}} x_{0}^{2} y_{0}^{2} c_{3}\right|_{0} ^{t}+3 c_{3} \int_{0}^{t} y_{0}\left[2 x_{0}^{\prime} x_{0} \frac{A_{1}^{*}}{A_{0}} y_{0}+\right.\right.$
$\left.2 \frac{A_{1}}{A_{0}} y_{0} x_{0}^{\prime} x_{0}\right] d \tau+\int_{0}^{t} f_{2} y_{0}^{\prime} d \tau$.
If the equations (20) are integrated in the period 4 K where K is the first order Jacobian intergral, we obtain
$-\frac{6 c_{3}}{A_{0}} \int_{0}^{4 K} x_{0}^{2} y_{0} y_{0}^{\prime}\left(A_{1}+A_{1}^{*}\right) d \tau+\int_{0}^{4 K} f_{1} x_{0}^{\prime} d \tau=0$,

$$
\begin{equation*}
\frac{6 c_{3}}{A_{0}} \int_{0}^{4 K} y_{0}^{2} x_{0} x_{0}^{\prime}\left(A_{1}+A_{1}^{*}\right) d \tau+\int_{0}^{4 K} f_{2} y_{0}^{\prime} d \tau=0 . \tag{21}
\end{equation*}
$$

If
the identities (21) are satisfied for any $A_{1}$ and $A_{1}{ }^{*}$. This relation is the constraint condition for the developed method. As an example, it is $f= \pm i F \vec{z}_{0}^{-1}$, i.e., $f_{1}= \pm F y_{0}^{\prime}$, and $f_{2}=\mp F x_{0}$, where $F$ is a real function of $x_{0}, y_{0}, x_{0}{ }^{\prime}, y_{0}{ }^{\prime}$. This type of functions describes the nonlinear gyroscopic force.
Let us transform the eqs.(18) and (19) by multiplying it with $x_{0}{ }^{\prime}$ and $y_{0}{ }^{\prime}$, respectively. If we integrate the transformed equations in the period 4 K it is
$\int_{0}^{4 K}\left[\frac{\partial f_{1}}{\partial x} x_{1}+\frac{\partial f_{1}}{\partial y} y_{1}+\frac{\partial f_{1}}{\partial x^{\prime}}\left(x_{1}^{\prime} \Omega_{0}+x_{0}^{\prime} \Omega_{1}\right)+\frac{\partial f_{1}}{\partial y^{\prime}}\left(y_{1}^{\prime} \Omega_{0}+y_{0}^{\prime} \Omega_{1}^{\prime}\right)\right] x_{0}^{\prime} d \tau=0$,
$\int_{0}^{4 K}\left[\frac{\partial f_{2}}{\partial x} x_{1}+\frac{\partial f_{2}}{\partial y} y_{1}+\frac{\partial f_{2}}{\partial x^{\prime}}\left(x_{1}^{\prime} \Omega_{0}+x_{0}^{\prime} \Omega_{1}\right)+\frac{\partial f_{2}}{\partial y^{\prime}}\left(y_{1}^{\prime} \Omega_{0}+y_{0}^{\prime} \Omega_{1}^{\prime}\right)\right] y_{0}^{\prime} d \tau=0$.
The values of $A_{1}, A_{1}{ }^{*}, \Omega_{1}, \Omega_{1}{ }^{*}$, are determined from the equations (20), (23) and (24). For computational reasons it is convenient to calculate the previous values according to the following relations
$\Omega_{1}=A_{1} W_{1}+A_{1}^{*} W_{1}^{*}+W_{0}, \quad \Omega_{1}^{*}=A_{1} B_{1}+A_{1}^{*} B_{1}^{*}+B_{0}$,
$A_{1}=\frac{P_{1} I_{22}-P_{2} I_{22}}{I_{11} I_{22}-I_{21} I_{12}}, \quad A_{1}^{*}=\frac{P_{1} I_{21}-P_{2} I_{11}}{I_{12} I_{21}-I_{22} I_{11}}$,
where
$W_{0}=\frac{1}{\Omega_{0} x_{0}^{\prime 2}} \int_{0}^{\tau} f_{1}\left(x_{0}, y_{0}, \Omega_{0} \dot{x}_{0}^{\prime}, \Omega_{0} y_{0}^{\prime}\right) x_{0}^{\prime} d \tau$,

$$
\begin{aligned}
& W_{1}=-\frac{1}{A_{0} \Omega_{0} x_{0}^{\prime 2}}\left[\Omega_{0}^{2} x_{0}^{\prime 2}+c_{1} x_{0}^{2}+c_{3} x_{0}^{4}-3 c_{3} x_{0}^{2} y_{0}^{2}+6 c_{3} \int_{0}^{\tau} x_{0}^{2} y_{0} y_{0}^{\prime} d \tau\right], \\
& W_{1}^{*}=-\frac{1}{A_{0} \Omega_{0} x_{0}^{\prime 2}}\left[3 c_{3} x_{0}^{2} y_{0}^{2}+6 c_{3} \int_{0}^{\tau} x_{0}^{2} y_{0} y_{0}^{\prime} d \tau\right], \\
& B_{0}=\frac{1}{\Omega_{0} y_{0}^{\prime 2}} \int_{0}^{\tau} f_{2}\left(x_{0}, y_{0}, \Omega_{0} x_{0}^{\prime}, \Omega_{0} y_{0}^{\prime}\right) y_{0}^{\prime} d \tau, \\
& B_{1}=-\frac{1}{A_{0} \Omega_{0} y_{0}^{\prime 2}}\left[3 c_{3} x_{0}^{2} y_{0}^{2}-6 c_{3} \int_{0}^{\tau} y_{0}^{2} x_{0} x_{0}^{\prime} d \tau\right], \\
& B_{1}^{*}=-\frac{1}{A_{0} \Omega_{0} y_{0}^{\prime 2}}\left[\Omega_{0}^{2} y_{0}^{\prime 2}+c_{1} y_{0}^{2}-c_{3} y_{0}^{4}+3 c_{3} x_{0}^{2} y_{0}^{2}-6 c_{3} \int_{0}^{\tau} y_{0}^{2} x_{0} x_{0}^{\prime} d \tau\right], \\
& P_{1}=-\int_{0}^{4 K} \frac{\partial f_{1}}{\partial x^{\prime}} W_{0} x_{0}^{\prime 2}-\int_{0}^{4 K} \frac{\partial f_{1}}{\partial y^{\prime}} B_{0} x_{0}^{\prime} y_{0}^{\prime}, \\
& I_{11}=\int_{0}^{4 K} \frac{\partial f_{1}}{\partial x} \frac{x_{0} x_{0}^{\prime}}{A_{0}}+\int_{0}^{4 K} \int_{0}^{4 K} \frac{\partial f_{2}}{\partial x_{1}^{\prime}} W_{0} x_{0}^{\prime} y_{0}^{\prime}-\int_{0} x_{0}^{2} \frac{\partial f_{2}}{\partial x^{\prime}} B_{0} \int_{0}^{\prime 2} \frac{\partial f_{1}}{\partial x^{\prime}} W_{1} x_{0}^{\prime 2}+\int_{0}^{4 K} \frac{\partial f_{1}}{\partial y^{\prime}} B_{1} x_{0}^{\prime} y_{0}^{\prime}, \\
& I_{12}=\int_{0}^{4 K} \frac{\partial f_{1}}{\partial y} \frac{y_{0} x_{0}^{\prime}}{A_{0}}+\int_{0}^{4 K} \frac{\partial f_{1}}{\partial y^{\prime}} \Omega_{0} x_{0}^{\prime} y_{0}^{\prime}+\int_{0}^{4 K} \frac{\partial f_{1}}{\partial x^{\prime}} W_{1}^{*} x_{0}^{\prime 2}+\int_{0}^{4 K} \frac{\partial f_{1}}{\partial y^{\prime}} B_{1}^{*} x_{0}^{\prime} y_{0}^{\prime}, \\
& I_{21}=\int_{0}^{4 K} \frac{\partial f_{2}}{\partial x} \frac{x_{0} y_{0}^{\prime}}{A_{0}}+\int_{0}^{4 K} \frac{\partial f_{2}}{\partial x^{\prime}} \Omega_{0} x_{0}^{\prime} y_{0}^{\prime}+\int_{0}^{4 K} \frac{\partial f_{2}}{\partial x^{\prime}} W_{1} x_{0}^{\prime} y_{0}^{\prime}+\int_{0}^{4 K} \frac{\partial f_{2}}{\partial y^{\prime}} B_{1} y_{0}^{\prime 2}, \\
& I_{22}=\int_{0}^{4 K} \frac{\partial f_{2}}{\partial y} \frac{y_{0} y_{0}^{\prime}}{A_{0}}+\int_{0}^{4 K} \frac{\partial f_{2}}{\partial y^{\prime}} \Omega_{0} y_{0}^{\prime 2}+\int_{0}^{4 K} \frac{\partial f_{2}}{\partial x^{\prime}} W_{1}^{*} x_{0}^{\prime} y_{0}^{\prime}+\int_{0}^{4 K} \frac{\partial f_{2}}{\partial y^{\prime}} B_{1}^{*} y_{0}^{\prime 2} .
\end{aligned}
$$

In the first approximation the solution is $x=x_{0}+\varepsilon x_{1}$, and $y=y_{0}+\varepsilon y_{1}$, i.e.
$x=\left(A_{0}+\varepsilon A_{1}\right) c n(\tau, k)$,
$\dot{x}=-\left(A_{0}+\varepsilon \Omega_{1} A_{0}+\varepsilon \Omega_{0} A_{1}\right) \operatorname{sn}(\tau, k) d n(\tau, k)$,
and

$$
\begin{align*}
& y=\left(A_{0}+\varepsilon A_{1}^{*}\right) \operatorname{sn}(\tau, k)  \tag{26}\\
& \dot{y}=\left(A_{0}+\varepsilon \Omega_{1}^{*} A_{0}+\varepsilon \Omega_{0} A_{1}^{*}\right) \operatorname{cn}(\tau, k) d n(\tau, k) \tag{27}
\end{align*}
$$

## EXAMPLE

Let us consider the case when the force has the form

$$
\begin{equation*}
f=\left(y_{0}+i x_{0}\right) F \tag{28}
\end{equation*}
$$

i.e.,
$f_{1}=y_{0} F, \quad f_{2}=x_{0} F$,
where

$$
\begin{equation*}
F=x_{0} y_{0}+\left(x_{0}^{2}+y_{0}^{2}\right) x_{0}^{\prime} y_{0}^{\prime} . \tag{29}
\end{equation*}
$$



Fig.1. Limit cycles: $\qquad$ numerical solution, ---- analytical solution for $\varepsilon=0.5$.

Substituting (28) into (22) it is
$A_{0}^{2}=\frac{7 K\left(1-k^{2}\right)\left(k^{2}-2\right)+14 E\left(k^{4}+1-k^{2}\right)}{\left[4\left(1+k^{2}\right)\left(8+k^{2}\right)-5\left(9 k^{2}+1\right)\right]\left[K\left(2+k^{2}\right)-2 E\left(1+k^{2}\right)\right]}$.
Due to the relations (25) it is evident that $A_{1}$ and ${A_{1}}^{*}$ are zero and the frequencies are $\Omega_{1}=W_{0}$, and $\Omega_{1}^{*}=B_{0}$, where
$W_{0}=-\frac{A_{0}^{2}}{\Omega_{0} s n^{2} d n^{2}}\left\{\frac{1}{15 k^{4}}\left[\left(1-k^{2}\right)\left(k^{2}-2\right) \tau+2\left(k^{4}+1-k^{2}\right) \frac{E}{K} \tau+2\left(k^{4}+1-k^{2}\right) Z(\tau)+\right.\right.$
$\left.\left.k^{2} \operatorname{sncndn}\left(3 k^{2} s n^{2}-1-k^{2}\right)\right]\right\}+\frac{A_{0}^{4}}{\Omega_{0} s n^{2} d n^{2}}\left\{-\frac{k^{5}}{7} s n^{5} c n d n+\frac{8 k^{2}+k^{4}}{7} s n^{3} c n d n+\frac{11-3 k^{2}}{70 k^{2}}\right.$
$\left[k c n d n+\left(1+k^{2}\right) \ln \frac{d n-k c n}{1-k}-k\right]+\frac{4\left(1+k^{2}\right)\left(8+k^{2}\right)-5\left(9 k^{2}+1\right)}{105 k^{4}}\left[\left(2+k^{2}\right) \tau-2\left(1+k^{2}\right) E(\tau)+k^{2}\right.$ sn cndn $\left.]\right\}$,
$B_{0}=-\frac{A_{0}^{2}}{\Omega_{0} c n^{2} d n^{2}}\left\{\frac{1}{15 k^{4}}\left[\left(1-k^{2}\right)\left(k^{2}-2\right) \tau+2\left(k^{4}+1-k^{2}\right) \frac{E}{K} \tau+2\left(k^{4}+1-k^{2}\right) Z(\tau)+\right.\right.$
$\left.\left.k^{2} \operatorname{sncndn}\left(3 k^{2} s n^{2}-1-k^{2}\right)\right]\right\}+\frac{A_{0}^{4}}{\Omega_{0} c n^{2} d n^{2}}\left\{-\frac{k^{2}}{7} s n^{5} c n d n+\frac{8 k^{2}+k^{4}}{7} s n^{3} c n d n+\frac{11-3 k^{2}}{70 k^{2}}\right.$
$\left[k c n d n+\left(1+k^{2}\right) \ln \frac{d n-k c n}{1-k}-k\right]+\frac{4\left(1+k^{2}\right)\left(8+k^{2}\right)-5\left(9 k^{2}+1\right)}{105 k^{4}}\left[\left(2+k^{2}\right) \tau-2\left(1+k^{2}\right) E(\tau)+k^{2} \operatorname{sn}\right.$ cn $\left.\left.d n\right]\right\}$, For the case when $c_{1}=0.243384$ and $c_{3}=0.25$, the modulus of Jacobian function is $k^{2}=1 / 2$, and the initial amplitude and frequency are $A_{0}=\Omega_{0}=0.56966$ and the solution in the first approximation is $z=0.56966[\operatorname{cn}(0.56966 t, \sqrt{0.5})+i \operatorname{sn}(0.56966 t, \sqrt{0.5})]$. In Fig.1. the limit cycles in $x-y, x-\dot{x}$ and $y-\dot{y}$ frames for $\varepsilon=0.5$ are plotted. The solutions obtained numerically by Runge-Kutta method and analytically by the presented method are compared. They are in good agreement.

## CONCLUSION

It can be concluded that the elliptic perturbation method suggested in this paper is applicable for solving strong differential equations with periodic solutions. The method gives solutions which are in good agreement with those obtained numerically, even for high values of non-linearity.

## REFERENCES

1. Cveticanin, L., Approximate analytical solutions to a class of non-linear equations with complex functions, Journal of Sound and Vibration, Vol.157, No.2, 289-302, 1992.
2. Cveticanin, L., An approximate solution for a system of two coupled differential equations, Journal of Sound and Vibration, Vol.152, No.2, pp.375-380, 1992.
3. Cveticanin, L., An asymptotic solution for weak nonlinear vibrations of the rotor, Mechanism and Machine Theory, Vol.28, No.4, pp.495-505, 1993.
4. Cveticanin, L., An approximate solution of a coupled differential equation with variable parameter, Trans. ASME, Journal of Applied Mechanics, Vol.60, March, pp.214-217, 1993.
5. Cveticanin, L., Dynamic behavior of a rotor with time-dependent parameters, JSME, Int. Journal, Ser.C, Vol.37, No.1, pp.41-48, 1994.
6. Cveticanin L., Approximate solution of a time-dependent differential equation, Meccanica, Vol.30, pp.665-671, 1995.
7. Cveticanin, L., Vibration of strongly nonlinear rotors with time variable parameters, Machine Vibration, Vol.4, pp.40-45, 1995.
8. Yuste, S.B., Bejarano, J.D., Construction of approximate analytical solutions to a new class of non-linear oscillator equation, Journal of Sound and Vibration, Vol.110, pp.347-350, 1986.
9. Chen, S.H., Cheung, Y.K., An elliptic perturbation method for certain strongly non-linear oscillators, Journal of Sound and Vibration, Vol.192, No.2, pp.435-464, 1996.
