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ABSTRACT

An elliptic perturbation method is developed for calculating solutions of strongly nonlinear

systems of the form z + Clz+ C3Z3= #(z, ~,cc), where z is the complex deflection fi.mction. The

Jacobian elliptic fhnctions are employed instead of the usual circular fi.mctions. The suggested
procedure can give also a second approximate solution. The method is applied for the equation
which describes cyclic motion. The analytically obtained results are compared with numerical
ones. They show a good agreement.

INTRODUCTION

The vibrations of the rotors are usually described with differential equations with complex
fimctions. Due to nonlinear properties of the rotors the differential equations are also nonlinear.
These non-linearities are not only weak but very often strong. To solve these equations various
asymptotic methods are developed [1-9]. When the non-linearity is of cubic type the generating
solution is a complex fbnction of two Jacobian elliptic flmctions [2,4,7]. If beside the strong
cubic nonlinear term also weak non-linearities exist, the perturbation methods based on the
Bogolubov-Mitropolski method [4], Krylov-Bogolubov [2] and Elliptic-Krylov-Bogolubov [7,8]
method are developed. For all of them it is common that the methods are correct only for small
non-linearities.
In this paper a perturbation method developed for the systems with one degree of freedom [9] is
extended for systems with two degrees of freedom described with complex fhnction. The method
is applicable not only for small but also large values of parameter e but it is correct only for a
strictly defined group of problems. The constraints of the method are discussed in the paper. h



example with nonlinear gyroscopic force is discussed. The analytically obtained results are
compared with numerical ones.

MATHEMATICAL MODEL

The mathematical model of the strong nonlinear rotor system is assumed as

z + Clz+ C3Z3= @(z, Z,cc), (1)

where z is the complex deflection finction, x~ are the coordinates of rotor center, c1 is the
coefficient of linear and cs of nonlinear terms, ~ is the nonlinear finction, cc is the complex
conjugate flmction and E is the small parameter. The equation (1) is a strong nonlinear
differential equation with complex finction. If the parameter G is negligible the differential
equation transforms to
Z+ C,Z+C3Z3= o, (2)

where z=x+iy is the complex fimction, x~ are coordinates, Z=(-l)ln, cl, C3are coefficients of the
linear and cubic term. It represents the generating equation. For c1>O,CPO the solution is

(3)z = ~[cn(r, k) + isn(r, k)], r = f20t

where cn(r,k) and sn(z-,k)are cosine and sine Jacobian elliptic functions, Ao, f20,k are called the
amplitude, the angular frequency and the modulus of the elliptic fimctions, respectively. The first
and the second time derivatives of the fimction (3) are

(ii drz=__=–
dr dt

fl~~(zk’sncn[cn(r,k) + isn(r,k)], (4)

where dn(r,k) is the Jacobian elliptic function. Substituting equations (3) and (4) into (2),
separating the real and imaginary parts and equating the coefficients of cn and cn3 to zero we
obtain

@’= c,+ c3~2, k’ = 2C342
Q “ (5)

THE ELLIPTIC PERTURBATION METHOD

The eq.(1) can be written in the form
i+c,x+c3(x3 –3xy2)=~,

(6)
y+c,y+c3(3x2y –y3)= @2,

wherejl and~z are the real and imaginary components of non-linearity, respectively. We assume
the solution of the equations (6) in the form of a series x = XO+ q +..., y = yO+ .gy,+.... In order

to construct the correct solution which must include the parameter e we introduce a nonlinear
transformation
x = Acn(~, k), y = A*sn(~,k), (7)
where
A =/$+&4 +..., A*=~*+&4*+... (8)



The Ai and Ai*are constants. We assume that the frequency of vibrations has different values in x
and y direction (Q and Q“ are not equal) and it is

s2=d”’--–#@Q,(r)+..., S2”=q+m;(r)+... (9)

The frequencies Ql, Ql”,... are dependent on ~. Then the first and second time derivatives of(7)
are
._akdr

—J = XJ20 +&(x;Qo + xJ2J+&2(x;Q2 + X;Q, + X;QJ +...,
x – dq dt

(lo)

—— = C20y;+@20y;+S2,y;)+82(Q:.Y;+Qy; +Qoy;)+.,j= 4 d~2

dr, dt
(11)

i = X;Q: + &(x;Q: + 2Q$2,X; + X:Q$2; ) + &2(x;Q; + 2Q$2,X; + X;Q: + X;fl; + X;Q;),
(12)

Y = Yl@:+ &(Y;Q + 2QOQ*Y:+ YOQOQ*’)+ &2(Y;Q; + 2QOQ;Y;+ Yl@7 + YIQ: + YOQ;)>
(13)

& ‘ 40where x’= —dr>Yo” —
1 dq “

Substituting (7)-(13) into (6) and separating the terms with the same values of parameter e a
system of differential equations is obtained:
&o: X;fl: + Clxo+ C3(X:– 3xoy: ) = o, (14)

Y@; + C,Y,+ %(-Y: + 3X:YO)= 0, (15)

E1: X;Cl: + 2f20Q,x: -1-Qoqx; + C,x, + C3(3X:X, – 3X1y; ‘a )– 6XOYOY1) = fl (Xo 7Yo>XOQO>Yo o Y

(16)

J@; + 2~of2:Y; + ~o~:y; + clyl + CS(–3Y;Yl+ 3Ylx; + 6x0Y0x1) = jz (XO>YO>‘;QO>Y;QO),

(17)
E2:
X;fl: + 2QOS2,X;+ X@; + Qoqx; + Qoqx; + C,X2+ C3[3XOX:+ 3X2X;– 3(x2y; + Zx]y,y, + XOY;+ 2XOY,YO)I

(18)
. “. ,! !

Y2fxl + m$-w + J@:+ %q YI + QOQ;Y; + c, yz- c3[3yOyf+ 3y2yf– 3(y2x~+ 2ylxoxl+ yox~+ 2yI#2xO)]=

%x +Ot %X;S20 -+x&,)+g(Y;Qo +YJn
C% ‘ Zjiy ’+at’

(19)

Q ‘ f20y~), and YZ= 7z(x0,Y0,~oxo>~oYo).where ~1= ~ (xo,Yo, OXO,

The solutions of (14) and (15) areas for the generating solution
X. = ~Cn(r, k), YO = 4-w(~,k),

where r = Qot.



To transform the equations (16) and (17) they have to be multiplied with XO’and ye’,
respectively. The transformed equations are

t A,
t

,A
-–(c,x: +C3X: -3x:y:c3 :-3; X:Y:C3 -3c,jxO[2y:y0 ;XO +Q@,i; :=-q<x; ,4

0 0

, A: ‘ A;
t t

A:QJyy; ;= -Q. -_Y; 0- -pY; + %Y: - WY:% :-3: X;Y:C3 f+ 3C3 YO[2X;X0—yo +
o 0 43

If the equations (20) are integrated in the period 4K where K is the first order Jacobian intergral,
we obtain

(21)
If

“jL+ = “fLy;dr = 0, (22)
o 0

the identities (21) are satisfied for any AI and A 1*.This relation is the constraint condition for the

developed method. As an example, it is j = *zF;o, i.e., ~ = +Fy;, and ~z = TFxO,where F is a

real fbnction of xo,yo, XO’,yo’. This type of finctions describes the nonlinear gyroscopic force.
Let us transform the eqs.(18) and (19) by multiplying it with XO’and yo’, respectively. If we
integrate the transformed equations in the period 4K it is

“%x+%
J[

8A , %
—Y, + #,Qo + X;Q*)+ ~(Y;Qo + yp;)lxj~ = 0,

#r’QV @
(23)

The values of A 1, A 1’, S21,f21*, are determined fi-om
computational reasons it is convenient to calculate
following relations

Q, = A,W, + A,~* + ?-?(., Q;= A,B, + A:B; + Bo,

A = <122- P21ZZ

‘ 1,,122-1,,1,2 ‘

(24)

the equations (20), (23) and (24).
the previous values according to

(25)

For
the

where



(27)

EXAMPLE

Let us consider the case when the force has the form

“f= (y.+2XO)F’,

i.e.,

A = Yi)F, f2 = XOF,
where

F = xoyo + (x; + Y:)x;Y;.

(28)

(29)
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Fig. 1. Limit cycles: numerical
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solution, ---- analytical solution for E=O.5.



Substituting (28) into (22) it is
7K(1 -k’)(k’ - 2)+ 14E(k4 + 1-k’)

“ = [4(1+k2)(8 +k’) - 5(9k2 + 1)][K(2 +/t’) - 2E(1 +k’)] “
(30)

Due to the relations (25) it is evident that Al and AI* are zero and the frequencies are S2,= WO,

and Cl; = Bo, where

4 {J-
‘0= - Qpn’dk’ 15k4

[(l-k’)(k’ -2)r+2(k4 +1-k2)~r+2(k4 +1-k2)Z(r)+

4 k5 s 8k2 + k’
k2sncndn(3k2sn2 -1-k’)]}+* Sn2h2 {-Tsn cndn+ 7 sn’cndn+ 1~~~~

o

[kcndn + (1+ k’)ln al~~ - k] + 4(1 ‘k2)(8 ~~’/4- 5(9k2 + 1) [(2 +k’)r - 2(1 +k2)E(r) +k’sncndn]},

Bo=- 4{1 —[(l-k’)(k’ -2)r+2(k4 +1-k’) :r+2(k4 +1-k’)z(r)+
Qocn’dn’ 15k4

4 8k2 + k’
k’sn cn dn (3k2sn2 -1- k’)]} + ~ cn2dn2 {-$wz5cn dn + , sn’cndn+ “-3k2

o 70k2

[kcndn + (1+k’)in ‘nl~~ -k] + 4(1 + ‘2)(8 ~~~4- 5(9k2 + 1) [(2+k2)r - 2(1 +k2)E(r) +k’sn cndn]},

For the case when c1=O.243384 and Cs=0.25, the modulus of Jacobian fbnction is ~=1/2, and the
initial amplitude and frequency are ~O=QO=O. 56966 and the solution in the first approximation is

z = 0.56966 [cn(0.56966t, ~) + zsn(O.56966t,~)]. In Fig. 1. the limit cycles in x – y, x – x

and y – ~ frames for E=O.5 are plotted. The solutions obtained numerical y by Runge-Kutta

method and analytical y by the presented method are compared. They are in good agreement.

CONCLUSION

It can be concluded that the elliptic perturbation method suggested in this paper is applicable for
solving strong differential equations with periodic solutions. The method gives solutions which
are in good agreement with those obtained numerically, even for high values of non-linearity.
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