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ABSTRACT In the study of structure-borne sound and vibration isolation, mobility is
used to reflect the characteristics of power transmission of a supporting structure. When
the contact area between an exciting machine and its supporting structure is larger than
the governing wave length, surface mobility is applied. Surface mobility is influenced
by many factors such as the pattern and frequency of excitation and the dimensions and
shape of the contact area. By means of analyses of these factors, the effects of power
transmission through the contact area can be obtained under different conditions. In this
paper, the effective point mobility and surface mobility over rectangular contact areas,
for the assumption of a uniform conphase velocity distribution, are studied. An infinite
homogeneous thin plate is chosen as a supporting structure. The resulting force
distribution and effective point mobility within the contact area are calculated. Using
effective point mobility, surface mobility is also calculated. By this method, not only is
the total power transmission calculated from an excitor to the thin platelike support, but
also the detailed pattern of power transmission within the contact areas can be predicted.

1. INTRODUCTION
In the study of vibration isolation between an exciting machine and a supporting structure,

mobility is used to reflect the characteristics of the supporting structure and hence the
transmission of vibrations and structure-borne sound into the supporting structure. Point
mobility can readily measured and, in some instances, easily calculated, however in most
practical cases contact occurs over a significant surface area. Work reported here is part of an
on-going study into the effects of large area contact betweeen a machine and its supporting
structure. Hammer and Petersson [1] developed the concept of surface mobility and applied it to
a strip-like contact area. Subsequent work by the current authors [2-5] has applied the concept
of surface mobility to circular and rectangular contact regions. These studies have shown that
there are significant differences between point mobility and various cases of surface mobility.
Hence the development of methods to predict and measure surface mobility is an important
aspect of the control of structure-borne sound and vibration.



In the current study, as in previous ones, theoretical calculations of surface mobility have
been developed assuming that the supporting structure is an infinite thin plate subject to bending
waves. The surface mobility over circular contact areas was studied by Norwood, Williamson
and Zhao [2,3] for a variety of contact conditions and assumptions. Rectangular contact
regions subjected to uniform conphase force distributions have been studied previously using
the complex power [4] and the effective point mobility [5] approaches to surface mobility. The
current study uses the effective point mobility concept to study rectangular contact regions
subjected to a uniform conphase velocity distribution.

Different contact conditions between an exciting machine and its supporting plate will lead to
different force and velocity distributions over the contact region. When the contact region is
formed between a very soft compliant isolator and a stiff supporting plate, the force distribution
may approximately be uniform and conphase. Alternatively for a relatively stiff isolator and a
more flexible supporting plate, a uniform and conphase velocity distribution will be a closer
approximation to the true contact conditions. In the study reported below surface mobility is
explored assuming a uniform conphase velocity distribution over rectangular contact areas for
an infinite plate. This complements previous studies of surface mobility over rectangular contact
areas where uniform force distributions were assumed [4,5].

2. BASIC THEORY
The supporting plate is assumed to be an infinite, homogeneous thin plate in order to

simplify the analysis. Energy loss is also neglected in the calculations. The thin plate
assumption implies that the thickness of the plate is only a fraction of the governing
wavelength. Thus the bending wave equation for homogeneous thin plate is valid [6]. This
equation is rewritten as

AAv- k4v = :CT(X,Y) (1)

where v represents the spatial transverse velocity of the plate; k is the bending wave number; B
the flexural stiffness of the plate; O(X,y) the force per unit area at point (x,y); A the two
dimensional Laplace operator. The general solution of equation (1) for arbitrary given force
distributions is a combination of cylindrical Hankel functions of the second kind [6] as

v(x, y) = jj~MoO(Xo,Yo)~(~)dxodYo (2)

where MOis the ordinary point mobility; r is the distance between the excitation point(Xo,y.)

and the observation point (x,y); S is the excitation region; and I_@)= H$) (kr) – H&)(–jkr) is
the propagation function defined as the difference between two Hankel functions.

For a rectangular contact area firmly attached to an infinite, homogeneous thin plate,
according to the assumption of a prescribed uniform conphase velocity distribution, a mixed
boundary condition must be handled. Thus equation (2) becomes an integral equation of
Fredholm type of the first kind in terms of unknown force distribution. To solve this integral
equation problem, a force distribution which should meet the uniform velocity boundary
conditions must be found. Polynomials of Chebychev type and trigonometric type may be
employed to approximate the force distribution. Such approaches, however, are not very
flexible for plates of arbitrary shape. Therefore, a discretised model is used in this study to
calculate the force distribution.

3. DISCRETISED MODEL
The aim of this study is to explore rectangular contact areas, hence a discretised model was

set up as shown in Figure 1.
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Figure 1 The Discretised Model of a

Rectangular Contact Axes

The force distribution is approximated by assuming a constant force distribution in each sub-
region. The centre of the subregion represents the point at which the force and the velocity act. 1
is the length of the rectangular contact area; w the width; n the number of row of the subregion
and m the number of the column. Thus, the length and width of each subregion are dl=l/m and
dw=w/n respectively. The force F over subregion (I,J) is equal to

‘w” ~d’”@I, J)dxdy‘(l>J) = ~-&,z -~,,’ (3)

The response to this force at subregion (i,j) can be approximated by assuming that a point
force, F(I,J), acts at the centre of subregion (I,J). Hence v(i,jlI,J), the velocity at (i,j) caused
by the force at (I,J) is given by [6]:

v(i, jlI,J) = MOF(I,J)H(kr) (4)

Therefore the velocity at subregion (i,j) caused by all forces over the contact region can be
obtained

v(i,j) = ~~MOF(I, J)H(kr) (5)
1=1 1=1

where r is the distance between the two central points of subregion (i,j) and (I,J).
The velocities of all subregions thus can be shown as below

v(l,l) = ~~MOF(I,J)H(kr)
1=1J=l

v(1,2)s ~~MOF(I,J)H(kr)
1=1 J=]

. . . . . .

v(n, m) = ~~MOF(I, J)H(kI-)
1=1 J=l

which can be written in a matrix form of

{T] =[T]{~} (6)



where {v} consists of v(i,j), i=l ,n, j=l ,m; {~} consists of F(I,J), i=l ,n, j=l ,m. Both of {V}

and {~} are column vectors which have nxm elements; [T] is a square transfer matrix with
nxm rows.

To fulfil the assum~tion of a uniform velocitv distribution. the velocitv over the whole
contact area should b- a uniform and in phase, Without
assumed, hence

Re[v(i,j)] = 1
Im[v(i,j)] = O

loss of generality “aunit velocity is

for i=l ,n and j=l,m (7)

Thus the force distribution over the contact area, {~}, can be calculated by equation (6).

4. EFFECTIVE POINT MOBILITY AND SURFACE MOBILITY
Using the effective mobility definition of surface mobility [1-3], the effective point mobility

at subregion (i,j) can be expressed by
v(i,j)

Me(i,j) = —
F(i,j)

(8)

As known from condition of equation (7) that v(i,j)=l, effective point mobility can be obtained
as

1
Me(i,j) = —

F(i, j)

The total complex power over the whole excited contact area can be written as

Q= ~F*V = ~lF12M’

(9)

(lo)

where F is the total force acting over the whole contact area and M’ is the surface mobility over
that area. The total complex power can also be expressed in terms of the forces acting over the
subregions and the effective point nobilities at these areas as

Q= ~$$F(ij)*v(U)=~~$lF(ij)12 Me(ij)
J-1 1-1 J–1I-1

(11)

Combining equation (10) and (1 1), the surface mobility can be obtained, based on the effective
point mobility, as

=lm”

‘s &z
lF(i,j)12Me(i,j) (12)

5. CALCULATION AND DISCUSSION
The theory derived in the previous section has been applied for uniform velocity excitation

over a rectangular contact area which aspect ratio of width w to length 1is 1:2. Results for the
cases for various Hehnholtz number, kw, are presented and discussed below.

5.1. FORCE DISTRIBUTION
Using equation (6), the forces over the rectangular contact areas are calculated by dividing

the contact region into subregions of m by n. The results are shown in Figures 2 and 3.
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Figure 2 The amplitude of the force (AF) over a rectangular contact area
(X=normalised length, Y=norrnalised width) for various values of kw:
(a) kw=l; (b) kw=$ (c) kw=lO; (d) kw=20.
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Figure 3

(a; (b)y

The phase of the force of a rectangular contact area along a mid-line in the
contact region: solid line-kw= 1; dotted line-kw=5; dashdot line-kw=lO;
dashed line-kw=20. (a) Along X direction at Y=O;(b) Along Y direction at
X=o.



Figure 2 shows the amplitude of the force distributed over a rectangular contact area at
different values of kw. Since k=2n/ k, kw is proportional to the ratio of the contact width, w,
to the bending wave length, L. From Figure 2 it can be seen that the values of the force acting
along the edges of the contact area are much higher than that over the central part of the contact
area. The forces at the corners are the largest. The force distributions over the rectangular
contact area are also symmetrical. Most of the force is distributed along the edges. Due to the
effect of the aspect ratios of the rectangular contact area, it can be seen easily that the force
acting along the long edges are much larger than that acting along the short edges. As kw
increases, the values of the forces over the central part of the contact area become larger and
larger, but the maxima of the forces decrease.

Figure 3 shows the phases of the force along a central cross section in different directions. In
Figure 3, the changes of the phases of the force are illustrated for different values of kw as
well. As kw increases, the changes of the phases trend to be smooth in the central part of the
contact area.It also can be seen that phase oscill@es around n/2. The forces at the edges of the
contact region in Figure (a) and (b) of Figure 3 have zero phase. Moving inwords from an edge
of the contact region, the phase rises rapidly from O to z, 180° out of phase, then oscilates
about 7r/2,90° out of face. In the central region a steady phase of 7c/2predominates.

5.2. EFFECTIVE POINT MOBILITY OVER THE CONTACT AREA
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Figure 4 The real part of the effective point mobility (REPM) over a rectangular
contact area (X=normalised length, Y=normalised width) for various
values of kw: (a) kw=l; (b) kw=5; (c) kw=lO; (d) kw=20.

For the case under study, effective point mobility has been calculated using equation (9)
under the assumption of uniform conphase velocity distribution. Note that the real part of the



effective point mobility reflects the amount of energy transferred at a point. Hence Figures 4
shows both the distribution of power transmission and force over the contact areas.

Figures 4 shows the distribution of the real part of the effective point mobility over a
rectangular contact area in which the aspect ratio is l/w=2 for different values of kw. From
Figure 4 it can be seen that the distributions of the effective point mobility are symmetrical
about the central axes of the contact area, but take different values in the x and y directions.
This means that the cases of power transmission are different in we two directions. When kw is
small, the power transmitted is more in the x direction than in the y direction. As kw becomes
larger and larger, the distribution of the nobilities trends to be more evenly distributed. The
region around the edge has very small values of the effective point mobility. However large
values, that is regions of significant power transfer, occur nearer the centre. As kw increases,
the main region of transmission expands outward md the values become smaller and smaller.
This implies that the main power of transmission region of the supporting plate is a ringlike
region which moves outward with increasing kw. In addition, the Figures also show that the
value can be positive or negative which means that there exist some points through which
power is transmitted into the supporting plate (positive value) and the other points where power
is transmitted back from the supporting plate to exciting machine (negetive value). The values
of effective point mobility decrease rapidly with increasing kw, i.e. as the wavelength becomes
short, the power input reduces.

5.3. SURFACE MOBILITY
Surface mobility based on a uniform conphase velocity distribution can be obtained by

equation (12). Figure 5 gives the result of calculation of real part of surface mobility over a
rectangular contact area normalised to the ordinary point mobility. This results is similar to that
calculated under the assumption of uniform conphase force distribution except that in the
uniform force case, periodic dips in surface mobility occur [4]. It also can be seen that, as kw
increases, the ability to transmit power into the contact area of the supporting plate decreases
markedly.
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*-1/w=2; o-1/w=1.

6. CONCLUSION
A method of calculating the force distribution and surface mobility for a uniform conphase

velocity over a two-dimensional rectangular contact area on an infinite thin plate has been
developed. Using this method, the force distribution, effective mobility and surface mobility
have been calculated and investigated by a discretised model.



The results of these calculations show that the force is concentrated on the edges of the
contact area. When the aspect ratio of the contact area is not equal to 1, the long edges bear
most of the force. The forces distributed over the contact area are out of phase which means
there exist both compressive and tensile forces acting in different parts of the contact area at the
same time.

The real part of effective point mobility is distributed in a ringlike manner. The values of the
real parts of effective point mobility in the central region and at the edges are very small. That is
most of power transmission occurs within the ringlike region. Power can be transmitted from
the exciting machine into the supporting plate and back from the supporting plate to the exciting
machine which depends on wether the value of the effective point mobility at a point is positive
or negative. As kw increases, the ringlike part expands outward and the values of the effective
point mobility decrease. The aspect ratio of the contact area also influences the distribution of
effective point mobility leading to larger values along the longer sides.

The real part of surface mobility for the case of uniform conphase velocity was obtained. The
results of calculation show that the real part of surface mobility decreases rapidly as kw
increases which implies power transmitted into the supporting plate decreases as the wavelength
decreases.
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