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ABATRACT In general, it is difficult to find some large scale model only from a bottom up

way viewpoint for complicated sound insultion systems like non-parallel double wall or sound-

bridge type double wall. Furthermore, in the acual environment, the input fluctuates non-

stationarily and the output is observed under contamination of the background noise. In this

paper, for the above complicated systems with non-stationary random input, a new evaluation

method is proposed by newly introducing a multiplicative-additive system model on an intensiy

scale. Owing to non-Gaussian property of input, output signals and background noise, the usual

identification method such as least-squares error method is not appropriate. So, a new identification

method based on Kullback’s information criterion is proposed to deal with the non-Gaussian

property. Next, the method predicting the response output probability distribution for arbitrary

random input without contamination of the background noise is proposed. Here, according to

original non-negative property of intensity quantity, a statistical type I_agueme series expansion

is first employed as the output probability distribution form. Its expansion coefficients can be

predicted by employing the above identified model. Finally, the proposed method is

experimental y confirmed too by applying it to the actual sound insulation systems.

1. INTRODUCTION

For the evaluation of the environmental acoustic system, it is important to predict thewhole

probability distribution closely related to the well-known evaluation indexes L., and L4x=5,50,95)

of the response output to an arbitrary random input such as a road traffic noise. Usually, in an

actual environmental acoustic system, the input fluctates randomly in non-Gaussian distribution

form and even the characteristic of the acoustic system changes according to the change of the



internal factors

within a long time interval. Furthermore, the output is contaminated by the background noise.

Under such complicated situation, it is too difficult to derive the model based on the internal

mechanism according to physical laws and establish the evaluation method of the non-stationary

output without the background noise only from a bottom up viewpoint. For practical use, some

model from a top down viewpoint is inevitably required. As such a model, by employing the

multiplicative model to the change of the internal factors and the additive model to the

contamination of the background noise as an external factor, a mixed type model on an intensity

scale can be taken.

In this paper, for the sound insulation system with a complicated sound insulation wall such as

non-parallel double wall and sound-bridge type double wall, by introducing the mixed model of

the multiplicative-additive type with only two system parameters, the stochastic evaluation of

the response output to an arbitrary random input is considered especially in a unified fem. First,

by assuming that the statistical moments of the background noise can be known in advance, the

identification method is proposed by newly introducing the Kullback’s information criterion

matched to non-Gauusian fluctuation of the observed output. Next, once after deriving the

method to determine the statistical moments of the random parameter reflecting the change of

the internal factors, the prediction method is proposed to evaluate the probability distribution

of the response output to an arbitmry mndom input. Then, by noting that the response output on

an intensity scale takes only the non-negative value, the probabability distribution is in advance

assumed to be expressed in a statistical type Laguerre series expansion form.

Finally, the proposed method is experimentally confirmed by applying it to the specific actual

sound insulation systems.

2. A STOCHASTIC EVALUATION METHOD FOR THE RESPONSE OUTPUT OF SOUND

INSULATION SYSTEM

2.1 INTRODUCTION OF MIXED TYPE MODEL FOR SOUND INSLATION SYSTEM

First, let us introduce a very simplified macro model of the sound insulation system in the

actual environment. It is assumed that x,y,v and z denote the input, the output, the background

noise and the output contaminated by the background noise of stationary type on an intensity

scale, respectively. Here, it is noted that the statistical moments of v can be known in advance

by observing the output when the input is not added. Since the output fluctuation reflecting the

change of the internal factors is not caused without the existence of input, it is reasonable to

express the system by the following the multiplicative model:

y=(a+&)x+b , (1)

where e is the random parameter reflecting the change of the internal factors. Since the output is

contaminated by the background noise, the sound insulation system can be practical y and

microscopically represented by the mixed model of multiplicative-additive type:



z=(a+g)x+b+v. (2)

2.2 IDENTIFICATION BASED ON KULLBACK’S INFORMATION CRITERION

2.2.1 KULLBACK’S INFORMATION CRITERION

By assuming that PO(y)and P(y;a) denote the true probability density function and the probability

density function with unknown estimation parameter vector a , respectively, Kullback’s

information criterion is defined as follows:

\

Po( y )
I= PO(y)log — dy=

/
pO(y)log p&)dy-/P~y )logqy; a)dy .

P@; a)
(3)

From the well-known property of the Kullback’s information, this satisfies that Ml and here an

equal sign is valid only when Po(y)=P(y;a). Since the Kullback’s information criterion can be

regarded as the distance between two probability distributions PO(y)and P( y;a), the estimation

problem of a becomes the problem minimizing I with respect to a. Here, in the utmost right

hand of Eq.(3), the first term is constant. So, the estimation problem is reduced to minimizing

the second term with respect to a. The extremal condition of this term yields

!~ P&)log F(y; a)dy=
!

~/aa~y;a) dy=o .

da ‘o@) P(y; a)
(4)

2.2.2 RECURSIVE ESTIMATION ALGORITHM

Let us denote the probability distribution of actually observed z and the probability distribution

of z described by Eq.(2) by Po(z), P(z;a,b), respectively. Upon replacing PO(Y), P(y;a) to PO(Z),

P(z;a,b) in Eq. (4), we can directly obtain the following necessary condition:

(a/aapo(z;a,b))( )d/dbpo(z;a,b) =0

P~z; a,b) ,= Po(z; a,b) , ‘
(5)

where <>, denotes an average operation with respect to z.

In order to derive the recursive estimation algorithm based on Eq.(5), it is necessary to prepare

the framework of the probability distribution form P(z;a,b) of z described by Eq.(2). This is

derived as follows. First, by employing the joint probability density function P(x,v,E) of x,v,&

and Eq.(2), the probability measure-preserving transformation leads to the joint probability density

function P(x,v,z) of x,v,z:

Since x, v and e are statistically independent, this is rewritten as follows:

P(x, v,z)=P(x )P@)pJE )ld3Zll=z-bv_a,
x

(6)

(7)

where P(x), P(v) and P$&) denote the marginal density functions of x, v and 8, respective y. By



integrating Eq.(7) with respect to X,V,P(z;a,b) can be expressed by

( )P(z; a, b)= $P~(~-a) ,
TV

(8)

where < >X, denotes an average operation about x and v. Since the random parameter e randomly

fluctuates symmetrical y around zero, it is supposed that P$&) can be approximated by the

Gaussian distribution with mean O and variance o. 2. After all, P(z;a,b) is represented as

(P(z; a, b)= —– e-+(+-a)’

)
do,: e “

&v

Substituting Eq.(9) into Eq.(5) yields the following simultaneous equations:

(d/da P(z; a,b)

) ((
(

)( )

2
z–b–v 1 z- b-v

P(z; a,b) z= ~a,~ x
–a e-~ — -a

x

) &v

/(

—+e-*(*-aY =o

& ‘ )) &v z

and

(d/da P(z; a,b)

) ((
(

)( )

2
z–b-v 1 z- b-v

P(z; a,b) z= ~a:o~xz x
–a e-~ — –a—— x

) KV

/(

4+-J HO

doe

~ e-z ~,z

)) ~&v ~

(9)

(lo)

(11)

Since these simultaneous equations are nonlinear regression functions, it is difficult to solve

Eqs.( 10) and (11) directly. So, by applying the well-known Robbins-Monro’s stochastic

approximation method to these, the following recursive estimation algorithm is obtained:

(12)

where r~=diag(rl~,ru) is the gain matrix satisfying the Robbins-Monro’s convergency condition.

2.3 PREDICTION OF THE RESPONSE OUTPUT PROBABILITY DISTRIBUTION



Let us consider the prediction of the probability distribution of the response output to an arbitrary

random input without the contamination of the background nois. However, there still remains

the problem on how to estimate the statistical information of&. So, before considering the

objective final problem, let us estimate the statistical moments of the random parameter e. By

employing the statistical independency of x, v and e, Eq. (2) gives

(Zn) =~ ~ n ! “ (~) (vJ) (xi(ax+Wi-J)
‘Go j=oi !J!(n–i–j)!

(13)

This can be rewritten as

[

n-1 n–i

(’9=* (Zn)-x x ‘! 1“(4(vJ)(x’(ax+w-i-oo (14)
i=oj=oi!j!(n–i–j)!

Therefore, according to Eq.( 14), by employing the same data of the input and observed output

used in the above identification procedure, the statistical moments of &can be estimated

recursive y.

After this preparation, the probability distribution of the response output can be predicted as

follows. Since the output on an intensity scale takes only non-negative values, its probability

density function can be expressed in a statistical type Lagueme series expansion form:

with

(Y)2 ((Y- (Y))’)

‘= ((Y-(Y))’) ‘s’=(y)
and

An=:;::)(LJ”Y-l)H’

(15)

(16)

(17)

where Pr( ) and L~faJ() are the gamma distribution and the associated Laguerre polynomial

defined respectively as

()
m-1

ccP&,m,s) = ~ - e-Y
r(m)s s

(18)

and

()n + a (-x)LI”)(x)=~ — .
n

j=O n-j J!
(19)



Here, by employing Eq.(19), Eq.(17) can be expressed in terms of n-th moment of y as follows:

A.=

()

‘+%-1 1 (yq=i (-ly –— .
r(~+n),= o n–r r ! Syr

(20)

From Eqs.( 16) and (20), the present problem is reduced to the prediction of the moments of y.

Upon employing Eq.( 1) under the assumption of the statistical independency of x and e, the

moments of y can be predicted by

(y~= ~ (r) (8’)(xi(ax+b~-i) .
‘=O 1

(21)

3. APPLICATION TO ACTUAL SOUND INSULATION SYSTEMS

Our experiments has been made to identify the sound insulation systems and predict the

probability distribution of the resposnse output. Figure 1 shows the experimental setup. Between

a 50.3 m3 transmission room and a 24.6m3 reception room, each of a single wall, a non-paralell

double wall and a sound-bridge type double wall consisting of the aluminuium panel has been

attached. The panel is 1.2mm thick, 840mm wide and 1740mm long. In these experiments, by

supplying the road traffic noise to the loudspeaker in the transmission room, the sounds in both

rooms have been measured through

two sound level meters and recorded in

a data recorder. Later, they were

sampled simultaneously at every one

second and 1000 pairs of data have been

obtained. The sound measured in the

reception room and the white noise

generated by a noise generator as a

background noise have been composed

by the digital computer. The reason why

this has been done is that the

probability distribution of the output

without contamination of the

background noise has been required to

compare it to the theoretical distribution

predicted by the proposed method.

Then, in order to make the influence of

the background noise notable

intentionally, the average power of the

background noise has been adjusted 3

dB lower than the one of the output.
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Fig. 1 Experimental setup.
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Fig. 2 The estimated values of a, b for a sound insulation system with non-

parallel doubel wall.

First, for each sound insulation system,

by employing the first 800 pairs of data,

two parameters a, b of the mixed model

have been estimated. Figure 2 shows

the convergence process of the

parameters a,b for a sound insulation

system with non-parallel double wall.

For each of a, b, each of the estimated

values has been converged to almost the

same -value regardless of two different

initial values, respectively.

Next, once after estimating the statistical

moments of &, the probability

distribution of the response output to the

remaining 200 sound input data has been

predicted according to the method stated

in section 2.3 and compared to the
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Fig. 3 A comparison between theoretically

predicted curves and experimentally sampled

values for a sound insulation system wit non-

parallel double wall.

experimental probability distribution. Figures 3 and 4 show the results for a sound insulation

sytem with non-parallel double wall and a sound insulation sytem with sound-bridge type

double wall, respectively. In each figure, the n-th approximation curve of the theoretical probability

distribution has been calculated by truncating Eq. (15) except first n terms. In both figures, we

can see that even first approximation curves agree well with experimental values. Furthermore,



even though increasing the degree of the

approximation of the theoretical curve, it

can be recognized that the theoretical

curve explains the experiment stably

without divergence.

4. CONCLUSION

It is originally difficult to evaluate the

complicated sound insulation systems

such as non-parallel double wall and

sound-bridge type double wall, by

applying only the well-known acoustic

theory. In this paper, for the evaluation

of these complicated systems, some new

method predicting the probability

distribution of the response output has

been proposed. By considering the change

of internal factors and the existence of the

background noise, the mixed model of
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Fig. 4 A comparison between theoretically

predicted curves and experimentally sampled

values for a sound insulation system with sound-

bridge type double wall .

multiplicative-additive model on an intensity scale has been first introduced. Then, the estimation

algorithm of model parameters has been derived by employing the Kullback’s information

criterion reached to the arbitrzuy non-Gaussian type fluctuations. For the evaluation of the response

output, the method predicting the expansion coefficients of the probability distribution of the

response output expressed by a statistical type Laguerre series expansion has been proposed.

Finally, the effectiveness of the proposed method has been confirmed experimentally by applying

it to the specific actual sound insulation systems.
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